Invariant regularization of supersymmetric chiral gauge theory

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the "central extension" of N = 1 supersymmetry algebra) and of the R-current.

Original languageEnglish
Pages (from-to)194-210
Number of pages17
JournalProgress of Theoretical Physics Supplement
Issue number135
DOIs
Publication statusPublished - Jan 1 1999

Fingerprint

gauge theory
anomalies
supersymmetry
commutators
gauge invariance
cancellation
algebra
operators
composite materials

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Cite this

Invariant regularization of supersymmetric chiral gauge theory. / Suzuki, Hiroshi.

In: Progress of Theoretical Physics Supplement, No. 135, 01.01.1999, p. 194-210.

Research output: Contribution to journalArticle

@article{e0ba05a3883c43069abc504a6e60bb27,
title = "Invariant regularization of supersymmetric chiral gauge theory",
abstract = "We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the {"}central extension{"} of N = 1 supersymmetry algebra) and of the R-current.",
author = "Hiroshi Suzuki",
year = "1999",
month = "1",
day = "1",
doi = "10.1143/PTPS.135.194",
language = "English",
pages = "194--210",
journal = "Progress of Theoretical Physics",
issn = "0033-068X",
publisher = "Published for the Research Institute for Fundamental Physics by Physical Society of Japan",
number = "135",

}

TY - JOUR

T1 - Invariant regularization of supersymmetric chiral gauge theory

AU - Suzuki, Hiroshi

PY - 1999/1/1

Y1 - 1999/1/1

N2 - We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the "central extension" of N = 1 supersymmetry algebra) and of the R-current.

AB - We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the "central extension" of N = 1 supersymmetry algebra) and of the R-current.

UR - http://www.scopus.com/inward/record.url?scp=0033235628&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033235628&partnerID=8YFLogxK

U2 - 10.1143/PTPS.135.194

DO - 10.1143/PTPS.135.194

M3 - Article

SP - 194

EP - 210

JO - Progress of Theoretical Physics

JF - Progress of Theoretical Physics

SN - 0033-068X

IS - 135

ER -