TY - GEN
T1 - Inverse analysis of vocal sound source by acoustic analysis of the vocal tract
AU - Yokota, Kazuya
AU - Ishikawa, Satoshi
AU - Koba, Yosuke
AU - Kijimoto, Shinya
N1 - Funding Information:
This work was supported by JSPS KAKENHI Grant Numbers JP17H03192 and JP18J11476.
Publisher Copyright:
© Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Diseases occurring near the vocal cords, such as laryngeal cancer, often cause voice disturbance as an initial symptom. As an acoustic diagnostic method for such diseases, the GRBAS (grade, roughness, breathiness, asthenia, strain) scale is widely used, but its objectivity is not well established. Instead, more accurate diagnosis may be possible by capturing the waveform of the volume velocity at the vocal cords (the vocal sound-source waveform). The aim of this study is to enable diagnosis of diseases near the vocal cords by identifying the sound-source waveform from voice measurements. In the proposed method, an analytical model of the vocal tract is used to identify the sound source. The air inside the vocal tract is modeled as concentrated masses connected by linear springs and dampers. The vocal tract shape is identified by making the natural frequencies of the analytical model correspond to the measured formant frequencies. The sound-source waveform is calculated from the analytical model by applying the measured voice (sound pressure) to the lip position of the identified vocal tract. To assess the validity of the proposed method, an experimental device was made to simulate the human voice mechanism. The device is equipped with artificial vocal cords made of a urethane elastomer that are self-excited by air flow. The sound pressure equivalent to the voice was measured using a microphone set at the lip position of the experimental device, and the flow velocity at the artificial vocal cords was measured using a laser Doppler velocimeter (LDV). To assess the model's validity, the sound-source waveform identified from the measured sound pressure was compared with the waveform measured using the LDV
AB - Diseases occurring near the vocal cords, such as laryngeal cancer, often cause voice disturbance as an initial symptom. As an acoustic diagnostic method for such diseases, the GRBAS (grade, roughness, breathiness, asthenia, strain) scale is widely used, but its objectivity is not well established. Instead, more accurate diagnosis may be possible by capturing the waveform of the volume velocity at the vocal cords (the vocal sound-source waveform). The aim of this study is to enable diagnosis of diseases near the vocal cords by identifying the sound-source waveform from voice measurements. In the proposed method, an analytical model of the vocal tract is used to identify the sound source. The air inside the vocal tract is modeled as concentrated masses connected by linear springs and dampers. The vocal tract shape is identified by making the natural frequencies of the analytical model correspond to the measured formant frequencies. The sound-source waveform is calculated from the analytical model by applying the measured voice (sound pressure) to the lip position of the identified vocal tract. To assess the validity of the proposed method, an experimental device was made to simulate the human voice mechanism. The device is equipped with artificial vocal cords made of a urethane elastomer that are self-excited by air flow. The sound pressure equivalent to the voice was measured using a microphone set at the lip position of the experimental device, and the flow velocity at the artificial vocal cords was measured using a laser Doppler velocimeter (LDV). To assess the model's validity, the sound-source waveform identified from the measured sound pressure was compared with the waveform measured using the LDV
UR - http://www.scopus.com/inward/record.url?scp=85084017453&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084017453&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85084017453
T3 - Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019
BT - Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019
PB - Canadian Acoustical Association
T2 - 26th International Congress on Sound and Vibration, ICSV 2019
Y2 - 7 July 2019 through 11 July 2019
ER -