Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures

Xiaoguang Liang, Lei Shu, Hao Lin, Ming Fang, Heng Zhang, Guofa Dong, Senpo Yip, Fei Xiu, Johnny C. Ho

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices.

Original languageEnglish
Article number34139
JournalScientific reports
Volume6
DOIs
Publication statusPublished - Sep 27 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures'. Together they form a unique fingerprint.

Cite this