Abstract
There is a growing interest in deploying nanoscale zero valent iron (NZVI) in permeable reactive barriers (PRBs) for groundwater remediation. In the present study a series of packed-column experiments were conducted in order to investigate the effectiveness of phosphorus removal from groundwater using NZVI and bimetallic NZVI/Cu as reactive materials within PRBs. Seven sets of packed-column experiments were conducted in order to study the effect of different design parameters for PRB; including delivery approach of NZVI into porous media, PRB's configuration, coexisting groundwater ions and change in flowrate. Results implied that doping NZVI surface with copper had an anti-aggregation effect and enhanced its performance in terms of phosphorus removal 2.2 times higher than bare NZVI. Moreover, the lower flowrate (10 ml/min) demonstrated improved phosphorus removal by 22% compared with higher flowrate (60 ml/min). Additionally, groundwater ions barely interfered phosphorus removal process with only ±6%. Overall, geochemical properties and characteristics of the supporting materials were key parameters in the removal process of phosphorus by NZVI/Cu.
Original language | English |
---|---|
Article number | 112144 |
Journal | Journal of Molecular Liquids |
Volume | 299 |
DOIs | |
Publication status | Published - Feb 1 2020 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Spectroscopy
- Physical and Theoretical Chemistry
- Materials Chemistry