Investigation of adequate calibration methods for x-ray fluorescence core scanning element count data: A case study of a marine sediment piston core from the gulf of alaska

Md Nurunnabi Mondal, Keiji Horikawa, Osamu Seki, Katsuya Nejigaki, Hideki Minami, Masafumi Murayama, Yusuke Okazaki

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

X-ray fluorescence (XRF) core scanner elemental count data are useful for high-resolution paleoceanographic studies. However, because several factors, such as changes in physical core properties, significantly affect element count intensities, the appropriate calibration of the count data is required. Besides, the existing approaches for calibration were not widely employed and require rigorous testing based on sediment variety. In this study, we analyzed high-resolution element intensity (cps) using a wet muddy marine sediment piston core that was collected from the northeast Gulf of Alaska and tested several approaches with ratio and log-ratio methods, and the reliability was evaluated by comparison with the concentrations that were measured by WD-XRF and an elemental analyzer. The results show that the lighter elements (Ti and K) exhibited a significantly weak relationship between raw counts measured by ITRAX and concentrations that were measured by the WD-XRF, indicating that some factors artificially influence ITRAX intensity data. The Cl intensity that is expressed as the water content in marine sediment increased significantly in the upper 202 cm by 42% and the top 25 cm by 73% as compared to the down-core (below 202 cm), which deviates the X-ray scattering and element-counts. The calibration of raw data through coherent/incoherent X-ray scattering ratio (CIR) and additive-and centered-log ratio reduces the offsets. The calibration by CIR performed best for Sr, Fe, Mn, Ti, Ca, K, and Br (0.56 < R2 < 0.91), and the correlation with concentration significantly increased for Ti and K of 100% and 56%, respectively. Therefore, the study suggests that the correction of raw counts through CIR is an effective approach for wet marine sediment when core physical properties have greater variability.

Original languageEnglish
Article number540
JournalJournal of Marine Science and Engineering
Volume9
Issue number5
DOIs
Publication statusPublished - May 2021

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Water Science and Technology
  • Ocean Engineering

Fingerprint

Dive into the research topics of 'Investigation of adequate calibration methods for x-ray fluorescence core scanning element count data: A case study of a marine sediment piston core from the gulf of alaska'. Together they form a unique fingerprint.

Cite this