TY - JOUR
T1 - Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography
AU - Saito, Kazuya
AU - Nomura, Shuhei
AU - Yamamoto, Shuhei
AU - Niyama, Ryuma
AU - Okabe, Yoji
N1 - Funding Information:
This work was supported by the Special Fund of the Institute of Industrial Science, the University of Tokyo; Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research (KAKENHI) Grants 24860024 and 17H04911; Asahi Glass Foundation Research Encouragement grants (2016); and Japan Science and Technology Agency, Exploratory Research for Advanced Technology (ERATO) Grant JPMJER1501. The work of S.N. is supported, in part, by KAKENHI Grant 24120002.
PY - 2017/5/30
Y1 - 2017/5/30
N2 - Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles inwing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: (i) the wing rigidity with relatively thick veins and (ii) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.
AB - Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles inwing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: (i) the wing rigidity with relatively thick veins and (ii) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.
UR - http://www.scopus.com/inward/record.url?scp=85020041533&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85020041533&partnerID=8YFLogxK
U2 - 10.1073/pnas.1620612114
DO - 10.1073/pnas.1620612114
M3 - Article
C2 - 28507159
AN - SCOPUS:85020041533
SN - 0027-8424
VL - 114
SP - 5624
EP - 5628
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 22
ER -