Investigation of pulmonary toxicity evaluation on mice exposed to polystyrene nanoplastics: The potential protective role of the antioxidant N-acetylcysteine

Yanliang Wu, Yongrong Yao, Hangjia Bai, Kuniyoshi Shimizu, Renshi Li, Chaofeng Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

Accumulating evidences show that the hazardous substance atmospheric nanoplastics increase the respiratory risk of individuals, but the inside toxicity mechanisms to lung tissue remain unclear. This study aims at investigating the potential mechanisms of inhaled cationic polystyrene nanoplastics (amine-polystyrene nanoplastics, APS-NPs)-induced pulmonary toxicity on mice. In vivo, the mice intratracheal administrated with APS-NPs suspension (5 mg/kg) were found inflammatory infiltrates in lung tissues through histopathology analysis. Furthermore, transcriptome analysis demonstrated that 1821 differentially expressed mRNA between APS group and control group were dominantly associated with 288 known KEGG pathways, indicating that APS-NPs might cause early inflammatory responses in lung tissue by activating the NLRP3/capase-1/IL-1β signaling pathway. Moreover, in vitro results also showed that NLRP3 inflammasome could be activated to induce pyroptosis in MLE-12 cells after exposure to APS-NPs. And, MH-S cells after exposure to APS-NPs exhibited increased Irg1 proteins, leading to the increasing generation of ROS and inflammatory factors (e.g., tnf-α, il-6, il-1β). In conclusion, these results revealed that Irg1/NF-κB/NLRP3/Caspase-1 signaling pathway was activated significantly after exposing to APS-NPs, leading to pulmonary toxicity on mice. Intriguingly, prior administration of the clinical antioxidant N-acetylcysteine (NAC) could serve as a possible candidate for the prevention and treatment of pulmonary toxicity induced by APS-NPs. The study contributes to a better understanding of the potential risks of environmental nanoplastics to humans and its improvement measure.

Original languageEnglish
Article number158851
JournalScience of the Total Environment
Volume855
DOIs
Publication statusPublished - Jan 10 2023

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'Investigation of pulmonary toxicity evaluation on mice exposed to polystyrene nanoplastics: The potential protective role of the antioxidant N-acetylcysteine'. Together they form a unique fingerprint.

Cite this