Involvement of multiple taste receptors in umami taste: Analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice

Keiko Nakano, Tomohiro Manabe, Ryusuke Yoshida, Ken Iwatsuki, Hisayuki Uneyama, Ichiro Takahashi, Yuzo Ninomiya

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Key points: The taste receptor T1R1 + T1R3 heterodimer and metabotropic glutamate receptors (mGluR) may function as umami taste receptors. Here, we used mGluR4 knockout (mGluR4-KO) mice and examined the function of mGluR4 in peripheral taste responses of mice. The mGluR4-KO mice showed reduced responses to glutamate and l-AP4 (mGluR4 agonist) in the chorda tympani and glossopharyngeal nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were suppressed by gurmarin (T1R3 blocker) and AIDA (group I mGluR antagonist). The present study not only provided functional evidence for the involvement of mGluR4 in umami taste responses, but also suggested contributions of T1R1 + T1R3 and mGluR1 receptors in glutamate responses. Umami taste is elicited by l-glutamate and some other amino acids and is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heterodimers of taste receptor type 1, members 1 and 3 (T1R1 + T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Accumulated evidences support the involvement of T1R1 + T1R3 in umami responses in mice. However, little is known about the in vivo function of mGluR in umami taste. Here, we examined taste responses of the chorda tympani (CT) and the glossopharyngeal (GL) nerves in wild-type mice and mice genetically lacking mGluR4 (mGluR4-KO). Our results indicated that compared to wild-type mice, mGluR4-KO mice showed significantly smaller gustatory nerve responses to glutamate and l-(+)-2-amino-4-phosphonobutyrate (an agonist for group III mGluR) in both the CT and GL nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were not affected by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (an antagonist for group III mGluR), but were suppressed by gurmarin (a T1R3 blocker) in the CT and (RS)-1-aminoindan-1,5-dicarboxylic acid (an antagonist for group I mGluR) in the CT and GL nerve. In wild-type mice, both quisqualic acid (an agonist for group I mGluR) and l-(+)-2-amino-4-phosphonobutyrate elicited gustatory nerve responses and these responses were suppressed by addition of (RS)-1-aminoindan-1,5-dicarboxylic acid and (RS)-alpha-cyclopropyl-4-phosphonophenylglycine, respectively. Collectively, the present study provided functional evidences for the involvement of mGluR4 in umami taste responses in mice. The results also suggest that T1R1 + T1R3 and mGluR1 are involved in umami taste responses in mice. Thus, umami taste would be mediated by multiple receptors.

Original languageEnglish
Pages (from-to)1021-1034
Number of pages14
JournalJournal of Physiology
Volume593
Issue number4
DOIs
Publication statusPublished - Feb 15 2015

Fingerprint

Knockout Mice
Metabotropic Glutamate Receptors
Chorda Tympani Nerve
Glossopharyngeal Nerve
Glutamic Acid
metabotropic glutamate receptor 4
Quisqualic Acid
Excitatory Amino Acid Antagonists
Glutamate Receptors
G-Protein-Coupled Receptors

All Science Journal Classification (ASJC) codes

  • Physiology

Cite this

Involvement of multiple taste receptors in umami taste : Analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice. / Nakano, Keiko; Manabe, Tomohiro; Yoshida, Ryusuke; Iwatsuki, Ken; Uneyama, Hisayuki; Takahashi, Ichiro; Ninomiya, Yuzo.

In: Journal of Physiology, Vol. 593, No. 4, 15.02.2015, p. 1021-1034.

Research output: Contribution to journalArticle

Nakano, Keiko ; Manabe, Tomohiro ; Yoshida, Ryusuke ; Iwatsuki, Ken ; Uneyama, Hisayuki ; Takahashi, Ichiro ; Ninomiya, Yuzo. / Involvement of multiple taste receptors in umami taste : Analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice. In: Journal of Physiology. 2015 ; Vol. 593, No. 4. pp. 1021-1034.
@article{eda809cfe9304214a752a06dca6beee8,
title = "Involvement of multiple taste receptors in umami taste: Analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice",
abstract = "Key points: The taste receptor T1R1 + T1R3 heterodimer and metabotropic glutamate receptors (mGluR) may function as umami taste receptors. Here, we used mGluR4 knockout (mGluR4-KO) mice and examined the function of mGluR4 in peripheral taste responses of mice. The mGluR4-KO mice showed reduced responses to glutamate and l-AP4 (mGluR4 agonist) in the chorda tympani and glossopharyngeal nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were suppressed by gurmarin (T1R3 blocker) and AIDA (group I mGluR antagonist). The present study not only provided functional evidence for the involvement of mGluR4 in umami taste responses, but also suggested contributions of T1R1 + T1R3 and mGluR1 receptors in glutamate responses. Umami taste is elicited by l-glutamate and some other amino acids and is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heterodimers of taste receptor type 1, members 1 and 3 (T1R1 + T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Accumulated evidences support the involvement of T1R1 + T1R3 in umami responses in mice. However, little is known about the in vivo function of mGluR in umami taste. Here, we examined taste responses of the chorda tympani (CT) and the glossopharyngeal (GL) nerves in wild-type mice and mice genetically lacking mGluR4 (mGluR4-KO). Our results indicated that compared to wild-type mice, mGluR4-KO mice showed significantly smaller gustatory nerve responses to glutamate and l-(+)-2-amino-4-phosphonobutyrate (an agonist for group III mGluR) in both the CT and GL nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were not affected by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (an antagonist for group III mGluR), but were suppressed by gurmarin (a T1R3 blocker) in the CT and (RS)-1-aminoindan-1,5-dicarboxylic acid (an antagonist for group I mGluR) in the CT and GL nerve. In wild-type mice, both quisqualic acid (an agonist for group I mGluR) and l-(+)-2-amino-4-phosphonobutyrate elicited gustatory nerve responses and these responses were suppressed by addition of (RS)-1-aminoindan-1,5-dicarboxylic acid and (RS)-alpha-cyclopropyl-4-phosphonophenylglycine, respectively. Collectively, the present study provided functional evidences for the involvement of mGluR4 in umami taste responses in mice. The results also suggest that T1R1 + T1R3 and mGluR1 are involved in umami taste responses in mice. Thus, umami taste would be mediated by multiple receptors.",
author = "Keiko Nakano and Tomohiro Manabe and Ryusuke Yoshida and Ken Iwatsuki and Hisayuki Uneyama and Ichiro Takahashi and Yuzo Ninomiya",
year = "2015",
month = "2",
day = "15",
doi = "10.1113/jphysiol.2014.284703",
language = "English",
volume = "593",
pages = "1021--1034",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - Involvement of multiple taste receptors in umami taste

T2 - Analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice

AU - Nakano, Keiko

AU - Manabe, Tomohiro

AU - Yoshida, Ryusuke

AU - Iwatsuki, Ken

AU - Uneyama, Hisayuki

AU - Takahashi, Ichiro

AU - Ninomiya, Yuzo

PY - 2015/2/15

Y1 - 2015/2/15

N2 - Key points: The taste receptor T1R1 + T1R3 heterodimer and metabotropic glutamate receptors (mGluR) may function as umami taste receptors. Here, we used mGluR4 knockout (mGluR4-KO) mice and examined the function of mGluR4 in peripheral taste responses of mice. The mGluR4-KO mice showed reduced responses to glutamate and l-AP4 (mGluR4 agonist) in the chorda tympani and glossopharyngeal nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were suppressed by gurmarin (T1R3 blocker) and AIDA (group I mGluR antagonist). The present study not only provided functional evidence for the involvement of mGluR4 in umami taste responses, but also suggested contributions of T1R1 + T1R3 and mGluR1 receptors in glutamate responses. Umami taste is elicited by l-glutamate and some other amino acids and is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heterodimers of taste receptor type 1, members 1 and 3 (T1R1 + T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Accumulated evidences support the involvement of T1R1 + T1R3 in umami responses in mice. However, little is known about the in vivo function of mGluR in umami taste. Here, we examined taste responses of the chorda tympani (CT) and the glossopharyngeal (GL) nerves in wild-type mice and mice genetically lacking mGluR4 (mGluR4-KO). Our results indicated that compared to wild-type mice, mGluR4-KO mice showed significantly smaller gustatory nerve responses to glutamate and l-(+)-2-amino-4-phosphonobutyrate (an agonist for group III mGluR) in both the CT and GL nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were not affected by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (an antagonist for group III mGluR), but were suppressed by gurmarin (a T1R3 blocker) in the CT and (RS)-1-aminoindan-1,5-dicarboxylic acid (an antagonist for group I mGluR) in the CT and GL nerve. In wild-type mice, both quisqualic acid (an agonist for group I mGluR) and l-(+)-2-amino-4-phosphonobutyrate elicited gustatory nerve responses and these responses were suppressed by addition of (RS)-1-aminoindan-1,5-dicarboxylic acid and (RS)-alpha-cyclopropyl-4-phosphonophenylglycine, respectively. Collectively, the present study provided functional evidences for the involvement of mGluR4 in umami taste responses in mice. The results also suggest that T1R1 + T1R3 and mGluR1 are involved in umami taste responses in mice. Thus, umami taste would be mediated by multiple receptors.

AB - Key points: The taste receptor T1R1 + T1R3 heterodimer and metabotropic glutamate receptors (mGluR) may function as umami taste receptors. Here, we used mGluR4 knockout (mGluR4-KO) mice and examined the function of mGluR4 in peripheral taste responses of mice. The mGluR4-KO mice showed reduced responses to glutamate and l-AP4 (mGluR4 agonist) in the chorda tympani and glossopharyngeal nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were suppressed by gurmarin (T1R3 blocker) and AIDA (group I mGluR antagonist). The present study not only provided functional evidence for the involvement of mGluR4 in umami taste responses, but also suggested contributions of T1R1 + T1R3 and mGluR1 receptors in glutamate responses. Umami taste is elicited by l-glutamate and some other amino acids and is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heterodimers of taste receptor type 1, members 1 and 3 (T1R1 + T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Accumulated evidences support the involvement of T1R1 + T1R3 in umami responses in mice. However, little is known about the in vivo function of mGluR in umami taste. Here, we examined taste responses of the chorda tympani (CT) and the glossopharyngeal (GL) nerves in wild-type mice and mice genetically lacking mGluR4 (mGluR4-KO). Our results indicated that compared to wild-type mice, mGluR4-KO mice showed significantly smaller gustatory nerve responses to glutamate and l-(+)-2-amino-4-phosphonobutyrate (an agonist for group III mGluR) in both the CT and GL nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were not affected by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (an antagonist for group III mGluR), but were suppressed by gurmarin (a T1R3 blocker) in the CT and (RS)-1-aminoindan-1,5-dicarboxylic acid (an antagonist for group I mGluR) in the CT and GL nerve. In wild-type mice, both quisqualic acid (an agonist for group I mGluR) and l-(+)-2-amino-4-phosphonobutyrate elicited gustatory nerve responses and these responses were suppressed by addition of (RS)-1-aminoindan-1,5-dicarboxylic acid and (RS)-alpha-cyclopropyl-4-phosphonophenylglycine, respectively. Collectively, the present study provided functional evidences for the involvement of mGluR4 in umami taste responses in mice. The results also suggest that T1R1 + T1R3 and mGluR1 are involved in umami taste responses in mice. Thus, umami taste would be mediated by multiple receptors.

UR - http://www.scopus.com/inward/record.url?scp=84923395064&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84923395064&partnerID=8YFLogxK

U2 - 10.1113/jphysiol.2014.284703

DO - 10.1113/jphysiol.2014.284703

M3 - Article

C2 - 25529865

AN - SCOPUS:84923395064

VL - 593

SP - 1021

EP - 1034

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 4

ER -