TY - JOUR
T1 - Ion accumulation and expression of ion homeostasis-related genes associated with halophilism, NaCl-promoted growth in a halophyte Mesembryanthemum crystallinum L
AU - Tran, Dan Q.
AU - Konishi, Ayako
AU - Cushman, John C.
AU - Morokuma, Masahiro
AU - Toyota, Masanori
AU - Agarie, Sakae
N1 - Funding Information:
This work was supported by JSPS KAKENHI [Grant number 15K14637].
Publisher Copyright:
© 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2020/1/2
Y1 - 2020/1/2
N2 - A halophyte, the common ice plant (Mesembryanthemum crystallinum L.), shows the maximal growth under salinity, in which almost all crops die. The NaCl-stimulated growth, which is referred to as halophilism, is an important trait for adaptation to salinity, but the mechanism is still unclear. To elucidate factors contributing to the halophilism, we tested the effects of NaCl on growth, ion accumulation, and expression of ion homeostasis-related genes in suspension-cultured cells. Among nine ions analyzed, Na+, Cl−, K+, and NO3 − were accumulated significantly in the cells showing halophilism than that in the salt-untreated cells, and the accumulation of these ions was positively correlated with the growth. Also, the expression of ion homeostasis-related genes for plasma membrane transporters and channels for incorporation of nitrate (McNRT1), sodium (McHKT1), potassium (McKmt1), cations/Cl− (McCCC1), for tonoplast antiporters H+/Cl− (McCLC1) and Na+/H+ (McNHX1), and V-ATPase subunit c (McVmac1) for sequestration of Cl− and Na+ into the vacuole, and for enzymes catalyzing biosynthesis of proline (McP5CS) and ononitol (McImt1) was higher in the cells showing halophilism than that in the salt-untreated cells. These results indicate that the ion accumulation and the expression of ion homeostasis-related genes contribute to the NaCl-stimulated growth enhancement in the halophyte, the common ice plant.Abbreviations: CCC: cation/Cl- cotransporter; CLC: H+/Cl–antiporter; DW: dry weight; FW: fresh weight; HAK: high affinity potassium; HKT: high potassium transporter; Imt: myo-inositol O-methyl transferase; MIP: major intrinsic protein; NHX: Sodium/proton antiporter; P5CS: delta 1-pyrroline-5-carboxylate synthase; PCV: Packed cell volume; PEG: polyethylene glycol; XTH: xyloglucan endotransglucosylase/hydrolase.
AB - A halophyte, the common ice plant (Mesembryanthemum crystallinum L.), shows the maximal growth under salinity, in which almost all crops die. The NaCl-stimulated growth, which is referred to as halophilism, is an important trait for adaptation to salinity, but the mechanism is still unclear. To elucidate factors contributing to the halophilism, we tested the effects of NaCl on growth, ion accumulation, and expression of ion homeostasis-related genes in suspension-cultured cells. Among nine ions analyzed, Na+, Cl−, K+, and NO3 − were accumulated significantly in the cells showing halophilism than that in the salt-untreated cells, and the accumulation of these ions was positively correlated with the growth. Also, the expression of ion homeostasis-related genes for plasma membrane transporters and channels for incorporation of nitrate (McNRT1), sodium (McHKT1), potassium (McKmt1), cations/Cl− (McCCC1), for tonoplast antiporters H+/Cl− (McCLC1) and Na+/H+ (McNHX1), and V-ATPase subunit c (McVmac1) for sequestration of Cl− and Na+ into the vacuole, and for enzymes catalyzing biosynthesis of proline (McP5CS) and ononitol (McImt1) was higher in the cells showing halophilism than that in the salt-untreated cells. These results indicate that the ion accumulation and the expression of ion homeostasis-related genes contribute to the NaCl-stimulated growth enhancement in the halophyte, the common ice plant.Abbreviations: CCC: cation/Cl- cotransporter; CLC: H+/Cl–antiporter; DW: dry weight; FW: fresh weight; HAK: high affinity potassium; HKT: high potassium transporter; Imt: myo-inositol O-methyl transferase; MIP: major intrinsic protein; NHX: Sodium/proton antiporter; P5CS: delta 1-pyrroline-5-carboxylate synthase; PCV: Packed cell volume; PEG: polyethylene glycol; XTH: xyloglucan endotransglucosylase/hydrolase.
UR - http://www.scopus.com/inward/record.url?scp=85070810860&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070810860&partnerID=8YFLogxK
U2 - 10.1080/1343943X.2019.1647788
DO - 10.1080/1343943X.2019.1647788
M3 - Article
AN - SCOPUS:85070810860
VL - 23
SP - 91
EP - 102
JO - Plant Production Science
JF - Plant Production Science
SN - 1343-943X
IS - 1
ER -