Ion cyclotron range of frequencies heating and high-energy particle production in the Large Helical Device

T. Mutoh, R. Kumazawa, T. Seki, K. Saito, T. Watari, Y. Torii, N. Takeuchi, T. Yamamoto, F. Shimpo, G. Nomura, M. Yokota, M. Osakabe, M. Sasao, S. Murakami, T. Ozaki, T. Saida, Y. P. Zhao, H. Okada, Y. Takase, A. Fukuyama & 71 others N. Ashikawa, M. Emoto, H. Funaba, P. Goncharov, M. Goto, K. Ida, Hiroshi Idei, K. Ikeda, Inagaki Shigeru, M. Isobe, O. Kaneko, K. Kawahata, K. Khlopenkov, T. Kobuchi, A. Komori, A. Kostrioukov, S. Kubo, Y. Liang, S. Masuzaki, T. Minami, T. Mito, J. Miyazawa, T. Morisaki, S. Morita, S. Muto, Y. Nagayama, Y. Nakamura, H. Nakanishi, K. Narihara, Y. Narushima, K. Nishimura, N. Noda, T. Notake, S. Ohdachi, I. Ohtake, N. Ohyabu, Y. Oka, B. J. Peterson, A. Sagara, S. Sakakibara, R. Sakamoto, M. Sasao, K. Sato, M. Sato, T. Shimozuma, M. Shoji, H. Suzuki, Y. Takeiri, N. Tamura, K. Tanaka, K. Toi, T. Tokuzawa, K. Tsumori, K. Y. Watanabe, Y. Xu, H. Yamada, I. Yamada, S. Yamamoto, M. Yokoyama, Y. Yoshimura, M. Yoshinuma, K. Itoh, K. Ohkubo, T. Satow, S. Sudo, T. Uda, K. Yamazaki, K. Matsuoka, O. Motojima, Y. Hamada, M. Fujiwara

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Significant progress has been made with ion cyclotron range of frequencies (ICRF) heating in the Large Helical Device. This is mainly due to better confinement of the helically trapped particles and less accumulation of impurities in the region of the plasma core. During the past two years, ICRF heating power has been increased from 1.35 to 2.7 MW. Various wave-mode tests were carried out using minority-ion heating, second-harmonic heating, slow-wave heating and high-density fast-wave heating at the fundamental cyclotron frequency. This fundamental heating mode extended the plasma density range of effective ICRF heating to a value of 1 × 1020m-3. This use of the heating mode was its first successful application in large fusion devices. Using the minority-ion mode gave the best performance, and the stored energy reached 240 kJ using ICRF alone. This was obtained for the inward-shifted magnetic axis configuration. The improvement associated with the axis-shift was common for both bulk plasma and highly accelerated particles. For the minority-ion mode, high-energy ions up to 500 keV were observed by concentrating the heating power near the plasma axis. The confinement properties of high-energy particles were studied for different magnetic axis configurations, using the power-modulation technique. It confirmed that with the inward-shifted configuration the confinement of high-energy particles was better than with the normal configuration. By increasing the distance of the plasma to the vessel wall to about 2 cm, the impurity influx was sufficiently reduced to allow sustainment of the plasma with ICRF heating alone for more than 2 min.

Original languageEnglish
Pages (from-to)738-743
Number of pages6
JournalNuclear Fusion
Volume43
Issue number8
DOIs
Publication statusPublished - Aug 1 2003
Externally publishedYes

Fingerprint

particle production
cyclotrons
heating
ions
energy
minorities
configurations
particle energy
impurities
trapped particles
cyclotron frequency
concentrating
plasma density
vessels
fusion
harmonics
modulation

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Cite this

Mutoh, T., Kumazawa, R., Seki, T., Saito, K., Watari, T., Torii, Y., ... Fujiwara, M. (2003). Ion cyclotron range of frequencies heating and high-energy particle production in the Large Helical Device. Nuclear Fusion, 43(8), 738-743. https://doi.org/10.1088/0029-5515/43/8/315

Ion cyclotron range of frequencies heating and high-energy particle production in the Large Helical Device. / Mutoh, T.; Kumazawa, R.; Seki, T.; Saito, K.; Watari, T.; Torii, Y.; Takeuchi, N.; Yamamoto, T.; Shimpo, F.; Nomura, G.; Yokota, M.; Osakabe, M.; Sasao, M.; Murakami, S.; Ozaki, T.; Saida, T.; Zhao, Y. P.; Okada, H.; Takase, Y.; Fukuyama, A.; Ashikawa, N.; Emoto, M.; Funaba, H.; Goncharov, P.; Goto, M.; Ida, K.; Idei, Hiroshi; Ikeda, K.; Shigeru, Inagaki; Isobe, M.; Kaneko, O.; Kawahata, K.; Khlopenkov, K.; Kobuchi, T.; Komori, A.; Kostrioukov, A.; Kubo, S.; Liang, Y.; Masuzaki, S.; Minami, T.; Mito, T.; Miyazawa, J.; Morisaki, T.; Morita, S.; Muto, S.; Nagayama, Y.; Nakamura, Y.; Nakanishi, H.; Narihara, K.; Narushima, Y.; Nishimura, K.; Noda, N.; Notake, T.; Ohdachi, S.; Ohtake, I.; Ohyabu, N.; Oka, Y.; Peterson, B. J.; Sagara, A.; Sakakibara, S.; Sakamoto, R.; Sasao, M.; Sato, K.; Sato, M.; Shimozuma, T.; Shoji, M.; Suzuki, H.; Takeiri, Y.; Tamura, N.; Tanaka, K.; Toi, K.; Tokuzawa, T.; Tsumori, K.; Watanabe, K. Y.; Xu, Y.; Yamada, H.; Yamada, I.; Yamamoto, S.; Yokoyama, M.; Yoshimura, Y.; Yoshinuma, M.; Itoh, K.; Ohkubo, K.; Satow, T.; Sudo, S.; Uda, T.; Yamazaki, K.; Matsuoka, K.; Motojima, O.; Hamada, Y.; Fujiwara, M.

In: Nuclear Fusion, Vol. 43, No. 8, 01.08.2003, p. 738-743.

Research output: Contribution to journalArticle

Mutoh, T, Kumazawa, R, Seki, T, Saito, K, Watari, T, Torii, Y, Takeuchi, N, Yamamoto, T, Shimpo, F, Nomura, G, Yokota, M, Osakabe, M, Sasao, M, Murakami, S, Ozaki, T, Saida, T, Zhao, YP, Okada, H, Takase, Y, Fukuyama, A, Ashikawa, N, Emoto, M, Funaba, H, Goncharov, P, Goto, M, Ida, K, Idei, H, Ikeda, K, Shigeru, I, Isobe, M, Kaneko, O, Kawahata, K, Khlopenkov, K, Kobuchi, T, Komori, A, Kostrioukov, A, Kubo, S, Liang, Y, Masuzaki, S, Minami, T, Mito, T, Miyazawa, J, Morisaki, T, Morita, S, Muto, S, Nagayama, Y, Nakamura, Y, Nakanishi, H, Narihara, K, Narushima, Y, Nishimura, K, Noda, N, Notake, T, Ohdachi, S, Ohtake, I, Ohyabu, N, Oka, Y, Peterson, BJ, Sagara, A, Sakakibara, S, Sakamoto, R, Sasao, M, Sato, K, Sato, M, Shimozuma, T, Shoji, M, Suzuki, H, Takeiri, Y, Tamura, N, Tanaka, K, Toi, K, Tokuzawa, T, Tsumori, K, Watanabe, KY, Xu, Y, Yamada, H, Yamada, I, Yamamoto, S, Yokoyama, M, Yoshimura, Y, Yoshinuma, M, Itoh, K, Ohkubo, K, Satow, T, Sudo, S, Uda, T, Yamazaki, K, Matsuoka, K, Motojima, O, Hamada, Y & Fujiwara, M 2003, 'Ion cyclotron range of frequencies heating and high-energy particle production in the Large Helical Device', Nuclear Fusion, vol. 43, no. 8, pp. 738-743. https://doi.org/10.1088/0029-5515/43/8/315
Mutoh, T. ; Kumazawa, R. ; Seki, T. ; Saito, K. ; Watari, T. ; Torii, Y. ; Takeuchi, N. ; Yamamoto, T. ; Shimpo, F. ; Nomura, G. ; Yokota, M. ; Osakabe, M. ; Sasao, M. ; Murakami, S. ; Ozaki, T. ; Saida, T. ; Zhao, Y. P. ; Okada, H. ; Takase, Y. ; Fukuyama, A. ; Ashikawa, N. ; Emoto, M. ; Funaba, H. ; Goncharov, P. ; Goto, M. ; Ida, K. ; Idei, Hiroshi ; Ikeda, K. ; Shigeru, Inagaki ; Isobe, M. ; Kaneko, O. ; Kawahata, K. ; Khlopenkov, K. ; Kobuchi, T. ; Komori, A. ; Kostrioukov, A. ; Kubo, S. ; Liang, Y. ; Masuzaki, S. ; Minami, T. ; Mito, T. ; Miyazawa, J. ; Morisaki, T. ; Morita, S. ; Muto, S. ; Nagayama, Y. ; Nakamura, Y. ; Nakanishi, H. ; Narihara, K. ; Narushima, Y. ; Nishimura, K. ; Noda, N. ; Notake, T. ; Ohdachi, S. ; Ohtake, I. ; Ohyabu, N. ; Oka, Y. ; Peterson, B. J. ; Sagara, A. ; Sakakibara, S. ; Sakamoto, R. ; Sasao, M. ; Sato, K. ; Sato, M. ; Shimozuma, T. ; Shoji, M. ; Suzuki, H. ; Takeiri, Y. ; Tamura, N. ; Tanaka, K. ; Toi, K. ; Tokuzawa, T. ; Tsumori, K. ; Watanabe, K. Y. ; Xu, Y. ; Yamada, H. ; Yamada, I. ; Yamamoto, S. ; Yokoyama, M. ; Yoshimura, Y. ; Yoshinuma, M. ; Itoh, K. ; Ohkubo, K. ; Satow, T. ; Sudo, S. ; Uda, T. ; Yamazaki, K. ; Matsuoka, K. ; Motojima, O. ; Hamada, Y. ; Fujiwara, M. / Ion cyclotron range of frequencies heating and high-energy particle production in the Large Helical Device. In: Nuclear Fusion. 2003 ; Vol. 43, No. 8. pp. 738-743.
@article{a5d35e9ef18f486a8acff0b401bdf5d1,
title = "Ion cyclotron range of frequencies heating and high-energy particle production in the Large Helical Device",
abstract = "Significant progress has been made with ion cyclotron range of frequencies (ICRF) heating in the Large Helical Device. This is mainly due to better confinement of the helically trapped particles and less accumulation of impurities in the region of the plasma core. During the past two years, ICRF heating power has been increased from 1.35 to 2.7 MW. Various wave-mode tests were carried out using minority-ion heating, second-harmonic heating, slow-wave heating and high-density fast-wave heating at the fundamental cyclotron frequency. This fundamental heating mode extended the plasma density range of effective ICRF heating to a value of 1 × 1020m-3. This use of the heating mode was its first successful application in large fusion devices. Using the minority-ion mode gave the best performance, and the stored energy reached 240 kJ using ICRF alone. This was obtained for the inward-shifted magnetic axis configuration. The improvement associated with the axis-shift was common for both bulk plasma and highly accelerated particles. For the minority-ion mode, high-energy ions up to 500 keV were observed by concentrating the heating power near the plasma axis. The confinement properties of high-energy particles were studied for different magnetic axis configurations, using the power-modulation technique. It confirmed that with the inward-shifted configuration the confinement of high-energy particles was better than with the normal configuration. By increasing the distance of the plasma to the vessel wall to about 2 cm, the impurity influx was sufficiently reduced to allow sustainment of the plasma with ICRF heating alone for more than 2 min.",
author = "T. Mutoh and R. Kumazawa and T. Seki and K. Saito and T. Watari and Y. Torii and N. Takeuchi and T. Yamamoto and F. Shimpo and G. Nomura and M. Yokota and M. Osakabe and M. Sasao and S. Murakami and T. Ozaki and T. Saida and Zhao, {Y. P.} and H. Okada and Y. Takase and A. Fukuyama and N. Ashikawa and M. Emoto and H. Funaba and P. Goncharov and M. Goto and K. Ida and Hiroshi Idei and K. Ikeda and Inagaki Shigeru and M. Isobe and O. Kaneko and K. Kawahata and K. Khlopenkov and T. Kobuchi and A. Komori and A. Kostrioukov and S. Kubo and Y. Liang and S. Masuzaki and T. Minami and T. Mito and J. Miyazawa and T. Morisaki and S. Morita and S. Muto and Y. Nagayama and Y. Nakamura and H. Nakanishi and K. Narihara and Y. Narushima and K. Nishimura and N. Noda and T. Notake and S. Ohdachi and I. Ohtake and N. Ohyabu and Y. Oka and Peterson, {B. J.} and A. Sagara and S. Sakakibara and R. Sakamoto and M. Sasao and K. Sato and M. Sato and T. Shimozuma and M. Shoji and H. Suzuki and Y. Takeiri and N. Tamura and K. Tanaka and K. Toi and T. Tokuzawa and K. Tsumori and Watanabe, {K. Y.} and Y. Xu and H. Yamada and I. Yamada and S. Yamamoto and M. Yokoyama and Y. Yoshimura and M. Yoshinuma and K. Itoh and K. Ohkubo and T. Satow and S. Sudo and T. Uda and K. Yamazaki and K. Matsuoka and O. Motojima and Y. Hamada and M. Fujiwara",
year = "2003",
month = "8",
day = "1",
doi = "10.1088/0029-5515/43/8/315",
language = "English",
volume = "43",
pages = "738--743",
journal = "Nuclear Fusion",
issn = "0029-5515",
publisher = "IOP Publishing Ltd.",
number = "8",

}

TY - JOUR

T1 - Ion cyclotron range of frequencies heating and high-energy particle production in the Large Helical Device

AU - Mutoh, T.

AU - Kumazawa, R.

AU - Seki, T.

AU - Saito, K.

AU - Watari, T.

AU - Torii, Y.

AU - Takeuchi, N.

AU - Yamamoto, T.

AU - Shimpo, F.

AU - Nomura, G.

AU - Yokota, M.

AU - Osakabe, M.

AU - Sasao, M.

AU - Murakami, S.

AU - Ozaki, T.

AU - Saida, T.

AU - Zhao, Y. P.

AU - Okada, H.

AU - Takase, Y.

AU - Fukuyama, A.

AU - Ashikawa, N.

AU - Emoto, M.

AU - Funaba, H.

AU - Goncharov, P.

AU - Goto, M.

AU - Ida, K.

AU - Idei, Hiroshi

AU - Ikeda, K.

AU - Shigeru, Inagaki

AU - Isobe, M.

AU - Kaneko, O.

AU - Kawahata, K.

AU - Khlopenkov, K.

AU - Kobuchi, T.

AU - Komori, A.

AU - Kostrioukov, A.

AU - Kubo, S.

AU - Liang, Y.

AU - Masuzaki, S.

AU - Minami, T.

AU - Mito, T.

AU - Miyazawa, J.

AU - Morisaki, T.

AU - Morita, S.

AU - Muto, S.

AU - Nagayama, Y.

AU - Nakamura, Y.

AU - Nakanishi, H.

AU - Narihara, K.

AU - Narushima, Y.

AU - Nishimura, K.

AU - Noda, N.

AU - Notake, T.

AU - Ohdachi, S.

AU - Ohtake, I.

AU - Ohyabu, N.

AU - Oka, Y.

AU - Peterson, B. J.

AU - Sagara, A.

AU - Sakakibara, S.

AU - Sakamoto, R.

AU - Sasao, M.

AU - Sato, K.

AU - Sato, M.

AU - Shimozuma, T.

AU - Shoji, M.

AU - Suzuki, H.

AU - Takeiri, Y.

AU - Tamura, N.

AU - Tanaka, K.

AU - Toi, K.

AU - Tokuzawa, T.

AU - Tsumori, K.

AU - Watanabe, K. Y.

AU - Xu, Y.

AU - Yamada, H.

AU - Yamada, I.

AU - Yamamoto, S.

AU - Yokoyama, M.

AU - Yoshimura, Y.

AU - Yoshinuma, M.

AU - Itoh, K.

AU - Ohkubo, K.

AU - Satow, T.

AU - Sudo, S.

AU - Uda, T.

AU - Yamazaki, K.

AU - Matsuoka, K.

AU - Motojima, O.

AU - Hamada, Y.

AU - Fujiwara, M.

PY - 2003/8/1

Y1 - 2003/8/1

N2 - Significant progress has been made with ion cyclotron range of frequencies (ICRF) heating in the Large Helical Device. This is mainly due to better confinement of the helically trapped particles and less accumulation of impurities in the region of the plasma core. During the past two years, ICRF heating power has been increased from 1.35 to 2.7 MW. Various wave-mode tests were carried out using minority-ion heating, second-harmonic heating, slow-wave heating and high-density fast-wave heating at the fundamental cyclotron frequency. This fundamental heating mode extended the plasma density range of effective ICRF heating to a value of 1 × 1020m-3. This use of the heating mode was its first successful application in large fusion devices. Using the minority-ion mode gave the best performance, and the stored energy reached 240 kJ using ICRF alone. This was obtained for the inward-shifted magnetic axis configuration. The improvement associated with the axis-shift was common for both bulk plasma and highly accelerated particles. For the minority-ion mode, high-energy ions up to 500 keV were observed by concentrating the heating power near the plasma axis. The confinement properties of high-energy particles were studied for different magnetic axis configurations, using the power-modulation technique. It confirmed that with the inward-shifted configuration the confinement of high-energy particles was better than with the normal configuration. By increasing the distance of the plasma to the vessel wall to about 2 cm, the impurity influx was sufficiently reduced to allow sustainment of the plasma with ICRF heating alone for more than 2 min.

AB - Significant progress has been made with ion cyclotron range of frequencies (ICRF) heating in the Large Helical Device. This is mainly due to better confinement of the helically trapped particles and less accumulation of impurities in the region of the plasma core. During the past two years, ICRF heating power has been increased from 1.35 to 2.7 MW. Various wave-mode tests were carried out using minority-ion heating, second-harmonic heating, slow-wave heating and high-density fast-wave heating at the fundamental cyclotron frequency. This fundamental heating mode extended the plasma density range of effective ICRF heating to a value of 1 × 1020m-3. This use of the heating mode was its first successful application in large fusion devices. Using the minority-ion mode gave the best performance, and the stored energy reached 240 kJ using ICRF alone. This was obtained for the inward-shifted magnetic axis configuration. The improvement associated with the axis-shift was common for both bulk plasma and highly accelerated particles. For the minority-ion mode, high-energy ions up to 500 keV were observed by concentrating the heating power near the plasma axis. The confinement properties of high-energy particles were studied for different magnetic axis configurations, using the power-modulation technique. It confirmed that with the inward-shifted configuration the confinement of high-energy particles was better than with the normal configuration. By increasing the distance of the plasma to the vessel wall to about 2 cm, the impurity influx was sufficiently reduced to allow sustainment of the plasma with ICRF heating alone for more than 2 min.

UR - http://www.scopus.com/inward/record.url?scp=0042921054&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0042921054&partnerID=8YFLogxK

U2 - 10.1088/0029-5515/43/8/315

DO - 10.1088/0029-5515/43/8/315

M3 - Article

VL - 43

SP - 738

EP - 743

JO - Nuclear Fusion

JF - Nuclear Fusion

SN - 0029-5515

IS - 8

ER -