Irradiation Wavelength-Dependent Photocurrent Sensing Characteristics of AuNPs/P3HT Composites on Volatile Vapor

Bin Chen, Masami Mokume, Chuanjun Liu, Kenshi Hayashi

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Gas sensing characteristics of Au nanoparticles (AuNPs)/3-hexylthiophene-2, 5-diyl (P3HT) composite based on photocurrent detection under different irradiation wavelengths were investigated. AuNPs with different structures were prepared either by the vacuum sputtering/annealing method or by the wet chemical synthesis based on seed growth. AuNPs/P3HT composites were prepared by the dip coating method. The optical features of P3HT and Au nanostructure/P3HT composite were investigated. The optical absorption increase of AuNPs film was observed after P3HT coating, which was attributed to the interaction between the P3HT and the Au nano-islands. New shoulder peaks and the phenomenon of one spectral peak splitting into two were observed in the absorption spectra of the composite film, which confirmed the interaction between the AuNPs and the P3HT further. The photoconductivity characteristics of the P3HT and AuNPs with spectral peak position at 580-nm (AuNPs580)/P3HT composite films were investigated utilizing LED light source with different dominate wavelengths. The wavelength-dependent photocurrent change ratio I/I0 of both the P3HT and the AuNPs580/P3HT composite films was observed. The maximum I/I0 of the P3HT and AuNPs580 composite films emerged under LED irradiation with a dominate wavelength 590 nm, which was mainly ascribed to the antenna effect from the Au nano-islands, the carrier injection from nanostucture to P3HT, localized surface plasmon resonance coupling among Au nanostructures, and plasmon coupling between the Au nano-islands and the P3HT molecules. The response of Au nano-island/P3HT composite to ethanol vapor showed that the response and recovery time was shorter than 2 s. Furthermore, gas sensing characteristics were verified to be irradiation wavelength dependent. Irradiation light source with a dominate wavelength 590 nm produced the largest I/I0 1.07.

Original languageEnglish
Article number7293084
Pages (from-to)596-602
Number of pages7
JournalIEEE Sensors Journal
Volume16
Issue number3
DOIs
Publication statusPublished - Feb 1 2016

Fingerprint

Photocurrents
photocurrents
Vapors
Irradiation
Composite films
vapors
Nanoparticles
Wavelength
nanoparticles
irradiation
composite materials
Composite materials
wavelengths
Light emitting diodes
Light sources
Nanostructures
Coatings
light sources
light emitting diodes
Photoconductivity

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Electrical and Electronic Engineering

Cite this

Irradiation Wavelength-Dependent Photocurrent Sensing Characteristics of AuNPs/P3HT Composites on Volatile Vapor. / Chen, Bin; Mokume, Masami; Liu, Chuanjun; Hayashi, Kenshi.

In: IEEE Sensors Journal, Vol. 16, No. 3, 7293084, 01.02.2016, p. 596-602.

Research output: Contribution to journalArticle

@article{22acd6e0b63e4b4882cc8f302cfa01e6,
title = "Irradiation Wavelength-Dependent Photocurrent Sensing Characteristics of AuNPs/P3HT Composites on Volatile Vapor",
abstract = "Gas sensing characteristics of Au nanoparticles (AuNPs)/3-hexylthiophene-2, 5-diyl (P3HT) composite based on photocurrent detection under different irradiation wavelengths were investigated. AuNPs with different structures were prepared either by the vacuum sputtering/annealing method or by the wet chemical synthesis based on seed growth. AuNPs/P3HT composites were prepared by the dip coating method. The optical features of P3HT and Au nanostructure/P3HT composite were investigated. The optical absorption increase of AuNPs film was observed after P3HT coating, which was attributed to the interaction between the P3HT and the Au nano-islands. New shoulder peaks and the phenomenon of one spectral peak splitting into two were observed in the absorption spectra of the composite film, which confirmed the interaction between the AuNPs and the P3HT further. The photoconductivity characteristics of the P3HT and AuNPs with spectral peak position at 580-nm (AuNPs580)/P3HT composite films were investigated utilizing LED light source with different dominate wavelengths. The wavelength-dependent photocurrent change ratio I/I0 of both the P3HT and the AuNPs580/P3HT composite films was observed. The maximum I/I0 of the P3HT and AuNPs580 composite films emerged under LED irradiation with a dominate wavelength 590 nm, which was mainly ascribed to the antenna effect from the Au nano-islands, the carrier injection from nanostucture to P3HT, localized surface plasmon resonance coupling among Au nanostructures, and plasmon coupling between the Au nano-islands and the P3HT molecules. The response of Au nano-island/P3HT composite to ethanol vapor showed that the response and recovery time was shorter than 2 s. Furthermore, gas sensing characteristics were verified to be irradiation wavelength dependent. Irradiation light source with a dominate wavelength 590 nm produced the largest I/I0 1.07.",
author = "Bin Chen and Masami Mokume and Chuanjun Liu and Kenshi Hayashi",
year = "2016",
month = "2",
day = "1",
doi = "10.1109/JSEN.2015.2487278",
language = "English",
volume = "16",
pages = "596--602",
journal = "IEEE Sensors Journal",
issn = "1530-437X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "3",

}

TY - JOUR

T1 - Irradiation Wavelength-Dependent Photocurrent Sensing Characteristics of AuNPs/P3HT Composites on Volatile Vapor

AU - Chen, Bin

AU - Mokume, Masami

AU - Liu, Chuanjun

AU - Hayashi, Kenshi

PY - 2016/2/1

Y1 - 2016/2/1

N2 - Gas sensing characteristics of Au nanoparticles (AuNPs)/3-hexylthiophene-2, 5-diyl (P3HT) composite based on photocurrent detection under different irradiation wavelengths were investigated. AuNPs with different structures were prepared either by the vacuum sputtering/annealing method or by the wet chemical synthesis based on seed growth. AuNPs/P3HT composites were prepared by the dip coating method. The optical features of P3HT and Au nanostructure/P3HT composite were investigated. The optical absorption increase of AuNPs film was observed after P3HT coating, which was attributed to the interaction between the P3HT and the Au nano-islands. New shoulder peaks and the phenomenon of one spectral peak splitting into two were observed in the absorption spectra of the composite film, which confirmed the interaction between the AuNPs and the P3HT further. The photoconductivity characteristics of the P3HT and AuNPs with spectral peak position at 580-nm (AuNPs580)/P3HT composite films were investigated utilizing LED light source with different dominate wavelengths. The wavelength-dependent photocurrent change ratio I/I0 of both the P3HT and the AuNPs580/P3HT composite films was observed. The maximum I/I0 of the P3HT and AuNPs580 composite films emerged under LED irradiation with a dominate wavelength 590 nm, which was mainly ascribed to the antenna effect from the Au nano-islands, the carrier injection from nanostucture to P3HT, localized surface plasmon resonance coupling among Au nanostructures, and plasmon coupling between the Au nano-islands and the P3HT molecules. The response of Au nano-island/P3HT composite to ethanol vapor showed that the response and recovery time was shorter than 2 s. Furthermore, gas sensing characteristics were verified to be irradiation wavelength dependent. Irradiation light source with a dominate wavelength 590 nm produced the largest I/I0 1.07.

AB - Gas sensing characteristics of Au nanoparticles (AuNPs)/3-hexylthiophene-2, 5-diyl (P3HT) composite based on photocurrent detection under different irradiation wavelengths were investigated. AuNPs with different structures were prepared either by the vacuum sputtering/annealing method or by the wet chemical synthesis based on seed growth. AuNPs/P3HT composites were prepared by the dip coating method. The optical features of P3HT and Au nanostructure/P3HT composite were investigated. The optical absorption increase of AuNPs film was observed after P3HT coating, which was attributed to the interaction between the P3HT and the Au nano-islands. New shoulder peaks and the phenomenon of one spectral peak splitting into two were observed in the absorption spectra of the composite film, which confirmed the interaction between the AuNPs and the P3HT further. The photoconductivity characteristics of the P3HT and AuNPs with spectral peak position at 580-nm (AuNPs580)/P3HT composite films were investigated utilizing LED light source with different dominate wavelengths. The wavelength-dependent photocurrent change ratio I/I0 of both the P3HT and the AuNPs580/P3HT composite films was observed. The maximum I/I0 of the P3HT and AuNPs580 composite films emerged under LED irradiation with a dominate wavelength 590 nm, which was mainly ascribed to the antenna effect from the Au nano-islands, the carrier injection from nanostucture to P3HT, localized surface plasmon resonance coupling among Au nanostructures, and plasmon coupling between the Au nano-islands and the P3HT molecules. The response of Au nano-island/P3HT composite to ethanol vapor showed that the response and recovery time was shorter than 2 s. Furthermore, gas sensing characteristics were verified to be irradiation wavelength dependent. Irradiation light source with a dominate wavelength 590 nm produced the largest I/I0 1.07.

UR - http://www.scopus.com/inward/record.url?scp=84962159964&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84962159964&partnerID=8YFLogxK

U2 - 10.1109/JSEN.2015.2487278

DO - 10.1109/JSEN.2015.2487278

M3 - Article

VL - 16

SP - 596

EP - 602

JO - IEEE Sensors Journal

JF - IEEE Sensors Journal

SN - 1530-437X

IS - 3

M1 - 7293084

ER -