Isolation and characterization of a Chines hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

K. Hasegawa, O. Kuge, M. Nishijima, Y. Akamatsu

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidyl-ethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated levels of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.

Original languageEnglish
Pages (from-to)19887-19892
Number of pages6
JournalJournal of Biological Chemistry
Volume264
Issue number33
Publication statusPublished - Dec 15 1989
Externally publishedYes

Fingerprint

Phosphatidylserines
Biosynthesis
Cricetinae
Ovary
Ethanolamine
Cells
Cricetulus
Serine
Trichloroacetic Acid
Polyesters
Immobilized Cells
Enzyme activity
Reaction products
Enzymes
Dilution
Cell Extracts
Phospholipids
phosphorylethanolamine

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

Isolation and characterization of a Chines hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis. / Hasegawa, K.; Kuge, O.; Nishijima, M.; Akamatsu, Y.

In: Journal of Biological Chemistry, Vol. 264, No. 33, 15.12.1989, p. 19887-19892.

Research output: Contribution to journalArticle

@article{288c542697d24f979478442e3d717ecd,
title = "Isolation and characterization of a Chines hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis",
abstract = "We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidyl-ethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated levels of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.",
author = "K. Hasegawa and O. Kuge and M. Nishijima and Y. Akamatsu",
year = "1989",
month = "12",
day = "15",
language = "English",
volume = "264",
pages = "19887--19892",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "33",

}

TY - JOUR

T1 - Isolation and characterization of a Chines hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

AU - Hasegawa, K.

AU - Kuge, O.

AU - Nishijima, M.

AU - Akamatsu, Y.

PY - 1989/12/15

Y1 - 1989/12/15

N2 - We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidyl-ethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated levels of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.

AB - We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidyl-ethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated levels of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.

UR - http://www.scopus.com/inward/record.url?scp=0024473409&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024473409&partnerID=8YFLogxK

M3 - Article

C2 - 2684962

AN - SCOPUS:0024473409

VL - 264

SP - 19887

EP - 19892

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 33

ER -