Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum

N. Okibe, N. Suzuki, M. Inui, Hideaki Yukawa

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Aims: To obtain strong, carbon source-inducible promoters useful for industrial applications of Corynebacterium glutamicum. Methods and Results: DNA microarray and qRT-PCR enabled identification of the promoters of cgR-2367 (malE1) and cgR-2459 (git1) as strong, maltose- and gluconate-inducible promoters, respectively, in C. glutamicum. Promoter probe assays revealed that in the presence of the inducing sugars, PmalE1 and Pgit1, respectively, facilitated 3·4- and 4·2-fold increased β-galactosidase activities compared to the same activity induced by glucose. In addition, PmalE1 was not functional in Escherichia coli, in which Pgit1 function was repressible, which enabled the cloning of a hitherto 'difficult-to-clone' heterologous gene of a lignocellulolytic enzyme, whose secretion was consequently induced by the carbon sources. Conclusions: PmalE1 and Pgit1 are strong, carbon source-inducible promoters of C. glutamicum whose characteristics in E. coli are integral to the secretion ability of C. glutamicum to secrete lignocellulolytic enzyme. Significance and Impact of the Study: Corynebacterium glutamicum, like its counterpart industrial workhorses E. coli and Bacillus subtilis, does exhibit strong, carbon source-inducible promoters, and the functionality of two of which was demonstrated in this study. While this study may be most relevant in the ongoing efforts to establish technologies of the biorefinery, it should also be of interest to general microbiologists exploring the versatility of industrial micro-organisms. In so doing, the study should impact future advances in industrial microbiology.

Original languageEnglish
Pages (from-to)173-180
Number of pages8
JournalLetters in Applied Microbiology
Volume50
Issue number2
DOIs
Publication statusPublished - Feb 1 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Applied Microbiology and Biotechnology

Fingerprint Dive into the research topics of 'Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum'. Together they form a unique fingerprint.

  • Cite this