Isomeric methoxy analogs of nimesulide for development of brain cyclooxygense-2 (COX-2)-targeted imaging agents: Synthesis, in vitro COX-2-inhibitory potency, and cellular transport properties

Yumi Yamamoto, Takuya Hisa, Jun Arai, Yohei Saito, Fumihiko Yamamoto, Takahiro Mukai, Takashi Ohshima, Minoru Maeda, Yasuhito Ohkubo

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Nimesulide analogs bearing a methoxy substituent either at the ortho-, meta- or para-position on the phenyl ring, were designed, synthesized, and evaluated for potential as radioligands for brain cyclooxygenase-2 (COX-2) imaging. The synthesis of nimesulide and regioisomeric methoxy analogs was based on the copper-mediated arylation of phenolic derivatives for the construction of diaryl ethers. These isomeric methoxy analogs displayed lipophilicity similar to that of nimesulide itself, as evidenced by their HPLC log P 7.4 values. In vitro inhibition studies using a colorimetric COX (ovine) inhibitor-screening assay demonstrated that the para-methoxy substituted analog retains the inhibition ability and selectivity observed for parent nimesulide toward COX-2 enzyme, whereas the meta- and ortho-methoxy substituents detrimentally affected COX-2-inhibition activity, which was further supported by molecular docking studies. Bidirectional transport cellular studies using Caco-2 cell culture model in the presence of the P-glycoprotein (P-gp) inhibitor, verapamil, showed that P-gp did not have a significant effect on the efflux of the para-methoxy substituted analog. Further investigations using the radiolabeled form of the para-methoxy substituted analog is warranted for in vivo characterization.

Original languageEnglish
Pages (from-to)6807-6814
Number of pages8
JournalBioorganic and Medicinal Chemistry
Volume23
Issue number21
DOIs
Publication statusPublished - Nov 1 2015

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Pharmaceutical Science
  • Drug Discovery
  • Clinical Biochemistry
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Isomeric methoxy analogs of nimesulide for development of brain cyclooxygense-2 (COX-2)-targeted imaging agents: Synthesis, in vitro COX-2-inhibitory potency, and cellular transport properties'. Together they form a unique fingerprint.

  • Cite this