Isothermal Growth and Stacking Evolution in Highly Uniform Bernal-Stacked Bilayer Graphene

Pablo Solís-Fernández, Yuri Terao, Kenji Kawahara, Wataru Nishiyama, Teerayut Uwanno, Yung Chang Lin, Keisuke Yamamoto, Hiroshi Nakashima, Hiroshi Nakashima, Kosuke Nagashio, Hiroki Hibino, Kazu Suenaga, Hiroki Ago, Hiroki Ago

Research output: Contribution to journalArticlepeer-review

Abstract

Controlling the stacking order in bilayer graphene (BLG) allows realizing interesting physical properties. In particular, the possibility of tuning the band gap in Bernal-stacked (AB) BLG (AB-BLG) has a great technological importance for electronic and optoelectronic applications. Most of the current methods to produce AB-BLG suffer from inhomogeneous layer thickness and/or coexistence with twisted BLG. Here, we demonstrate a method to synthesize highly pure large-area AB-BLG by chemical vapor deposition using Cu-Ni films. Increasing the reaction time resulted in a gradual increase of the AB stacking, with the BLG eventually free from twist regions for the longer growth times (99.4% of BLG has AB stacking), due to catalyst-assisted continuous BLG reconstruction driven by carbon dissolution-segregation processes. The band gap opening was confirmed by the electrical measurements on field-effect transistors using two different device configurations. The concept of the continuous reconstruction to achieve highly pure AB-BLG offers a way to control the stacking order of catalytically grown two-dimensional materials.

Original languageEnglish
Pages (from-to)6834-6844
Number of pages11
JournalACS nano
Volume14
Issue number6
DOIs
Publication statusPublished - Jun 23 2020

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Isothermal Growth and Stacking Evolution in Highly Uniform Bernal-Stacked Bilayer Graphene'. Together they form a unique fingerprint.

Cite this