TY - GEN
T1 - Iterative weighting factor estimation method for peak power reduction with adaptive subcarrier-phase control in turbo-coded multi-carrier CDM systems
AU - Muta, Osamu
AU - Akaiwa, Yoshihiko
PY - 2008
Y1 - 2008
N2 - In this paper, we propose a weighting factor (WF) iterative estimation method for a turbo-coded multi-carrier code division multiplexing (MC-CDM) system using partial-transmit sequence (PTS) based peak-to-average power (PAPR) reduction, where the transmitter structure in the proposed system is an extended version of the PTS and the systematic bits of turbo-code is adaptively flipped by multiplying WFs so as to reduce PAPR of MC-CDM signal. On the receiver side, WF estimation and error correction are jointly performed with turbo decoding, where WFs are estimated by exploiting the decoding results of two data streams using different spreading code. When PTS like PAPR reduction using 9 clusters is applied to MC-CDM signal with spreading factor of 16, PAPR of the transmit signal at the CCDF of 10-4 can be reduced by about 2.0dB, where the number of multiplexed codes is 8. With the proposed method, WF estimation accuracy is improved as the subcarrier modulation level increases. The degradation in block error rate (BLER) performance as compared with case of the perfect WF estimation is about 0.7dB at BLER=10-2 for QPSK-MC-CDM signal with PAPR reduction using 5 clusters in attenuated 12-path Rayleigh fading condition. In the MC-CDM system using 64QAM, the proposed method achieves almost the same BLER performance as case of the perfect WF estimation, even when the number of clusters is L = 9.
AB - In this paper, we propose a weighting factor (WF) iterative estimation method for a turbo-coded multi-carrier code division multiplexing (MC-CDM) system using partial-transmit sequence (PTS) based peak-to-average power (PAPR) reduction, where the transmitter structure in the proposed system is an extended version of the PTS and the systematic bits of turbo-code is adaptively flipped by multiplying WFs so as to reduce PAPR of MC-CDM signal. On the receiver side, WF estimation and error correction are jointly performed with turbo decoding, where WFs are estimated by exploiting the decoding results of two data streams using different spreading code. When PTS like PAPR reduction using 9 clusters is applied to MC-CDM signal with spreading factor of 16, PAPR of the transmit signal at the CCDF of 10-4 can be reduced by about 2.0dB, where the number of multiplexed codes is 8. With the proposed method, WF estimation accuracy is improved as the subcarrier modulation level increases. The degradation in block error rate (BLER) performance as compared with case of the perfect WF estimation is about 0.7dB at BLER=10-2 for QPSK-MC-CDM signal with PAPR reduction using 5 clusters in attenuated 12-path Rayleigh fading condition. In the MC-CDM system using 64QAM, the proposed method achieves almost the same BLER performance as case of the perfect WF estimation, even when the number of clusters is L = 9.
UR - http://www.scopus.com/inward/record.url?scp=58149110704&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58149110704&partnerID=8YFLogxK
U2 - 10.1109/VETECF.2008.201
DO - 10.1109/VETECF.2008.201
M3 - Conference contribution
AN - SCOPUS:58149110704
SN - 9781424417223
T3 - IEEE Vehicular Technology Conference
BT - The 68th IEEE Vehicular Technology Conference, VTC 2008-Fall
T2 - 68th Semi-Annual IEEE Vehicular Technology, VTC 2008-Fall, Conference
Y2 - 21 September 2008 through 24 September 2008
ER -