Jet reconstruction and performance using particle flow with the ATLAS Detector

ATLAS Collaboration

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb- 1 of ATLAS data from 8 TeV proton–proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.

Original languageEnglish
Article number466
JournalEuropean Physical Journal C
Volume77
Issue number7
DOIs
Publication statusPublished - Jul 1 2017

Fingerprint

Calorimeters
calorimeters
Detectors
detectors
Deposits
deposits
Hadrons
jet flow
neutral particles
piles
retaining
particle energy
hadrons
Piles
Momentum
counting
momentum
collisions
energy

All Science Journal Classification (ASJC) codes

  • Engineering (miscellaneous)
  • Physics and Astronomy (miscellaneous)

Cite this

Jet reconstruction and performance using particle flow with the ATLAS Detector. / ATLAS Collaboration.

In: European Physical Journal C, Vol. 77, No. 7, 466, 01.07.2017.

Research output: Contribution to journalArticle

@article{9d35adb601f24857bb7ad389f7fcef31,
title = "Jet reconstruction and performance using particle flow with the ATLAS Detector",
abstract = "This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb- 1 of ATLAS data from 8 TeV proton–proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.",
author = "{ATLAS Collaboration} and M. Aaboud and G. Aad and B. Abbott and J. Abdallah and O. Abdinov and B. Abeloos and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and R. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adamczyk and J. Adelman and M. Adersberger and T. Adye and Affolder, {A. A.} and T. Agatonovic-Jovin and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and Ahlen, {S. P.} and F. Ahmadov and G. Aielli and S. Akatsuka and H. Akerstedt and {\AA}kesson, {T. P.A.} and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and Verzini, {M. J.Alconada} and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and G. Alexander and T. Alexopoulos and M. Alhroob and B. Ali and M. Aliev and G. Alimonti and J. Alison and Alkire, {S. P.} and Allbrooke, {B. M.M.} and Allen, {B. W.} and Allport, {P. P.} and A. Aloisio and A. Alonso and F. Alonso",
year = "2017",
month = "7",
day = "1",
doi = "10.1140/epjc/s10052-017-5031-2",
language = "English",
volume = "77",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer New York",
number = "7",

}

TY - JOUR

T1 - Jet reconstruction and performance using particle flow with the ATLAS Detector

AU - ATLAS Collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdallah, J.

AU - Abdinov, O.

AU - Abeloos, B.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abreu, R.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adamczyk, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adye, T.

AU - Affolder, A. A.

AU - Agatonovic-Jovin, T.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahlen, S. P.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Akerstedt, H.

AU - Åkesson, T. P.A.

AU - Akimov, A. V.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Verzini, M. J.Alconada

AU - Aleksa, M.

AU - Aleksandrov, I. N.

AU - Alexa, C.

AU - Alexander, G.

AU - Alexopoulos, T.

AU - Alhroob, M.

AU - Ali, B.

AU - Aliev, M.

AU - Alimonti, G.

AU - Alison, J.

AU - Alkire, S. P.

AU - Allbrooke, B. M.M.

AU - Allen, B. W.

AU - Allport, P. P.

AU - Aloisio, A.

AU - Alonso, A.

AU - Alonso, F.

PY - 2017/7/1

Y1 - 2017/7/1

N2 - This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb- 1 of ATLAS data from 8 TeV proton–proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.

AB - This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb- 1 of ATLAS data from 8 TeV proton–proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.

UR - http://www.scopus.com/inward/record.url?scp=85024369614&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85024369614&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-017-5031-2

DO - 10.1140/epjc/s10052-017-5031-2

M3 - Article

AN - SCOPUS:85024369614

VL - 77

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 7

M1 - 466

ER -