Abstract
Isomers have been populated in Cm246 and No252 with quantum numbers Kπ=8-, which decay through Kπ=2- rotational bands built on octupole vibrational states. For N=150 isotones with (even) atomic number Z=94-102, the Kπ=8- and 2- states have remarkably stable energies, indicating neutron excitations. An exception is a singular minimum in the 2- energy at Z=98, due to the additional role of proton configurations. The nearly constant energies, in isotones spanning an 18% increase in Coulomb energy near the Coulomb limit, provide a test for theory. The two-quasiparticle Kπ=8- energies are described with single-particle energies given by the Woods-Saxon potential and the Kπ=2- vibrational energies by quasiparticle random-phase approximation calculations. Ramifications for self-consistent mean-field theory are discussed.
Original language | English |
---|---|
Article number | 034308 |
Journal | Physical Review C - Nuclear Physics |
Volume | 78 |
Issue number | 3 |
DOIs | |
Publication status | Published - Sept 15 2008 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics