TY - JOUR
T1 - Keap1 regulates the constitutive expression of GST A1 during differentiation of caco-2 cells
AU - Kusano, Yuri
AU - Horie, Shunsuke
AU - Shibata, Takahiro
AU - Satsu, Hideo
AU - Shimizu, Makoto
AU - Hitomi, Eri
AU - Nishida, Motohiro
AU - Kurose, Hitoshi
AU - Itoh, Ken
AU - Kobayashi, Akira
AU - Yamamoto, Masayuki
AU - Uchida, Koji
PY - 2008/6/10
Y1 - 2008/6/10
N2 - Kelch-like ECH-associated protein 1 (Keap1), a BTB-Kelch substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex, regulates the induction of the phase 2 enzymes, such as glutathione S-transferase (GST), by repressing the transcription factor Nrf2. It is known that, in the human gastrointestinal tract, both GST A1 and P1 are constitutively expressed as the major GST isozymes. In the present study, using the Keap1-overexpressing derivatives of Caco-2 cells, human carcinoma cell line of colonic origin, by stable transfection of wild type Keap1, we investigated the molecular mechanism underlying the constitutive expression of these GST isozymes during differentiation. It was revealed that the overexpression of Keap1 completely repressed the constitutive expression of GST A1, but not GST P1. In Keap1-overexpressed cells, dome formation disappeared, and the formation of the intact actin cytoskeletal organization at cell-cell contact sites and the recruitment of E-cadherin and β-catenin to adherens junctions were inhibited. The constitutive GST A1 expression in Caco-2 cells was repressed by disruption of E-cadherin-mediated cell-cell adhesion, suggesting the correlation between epithelial cell polarization and induction of the basal GST A1 expressions during Caco-2 differentiation. Keap1 overexpression indeed inhibited the activation of the small guanosine triphosphatase Rac1 on the formation of E-cadherin-mediated cell-cell adhesion. The transfection of V12Rac1, the constitutively active Rac1 mutant, into Keap1-overexpressed cells promoted the basal GST A1 expression, suggesting that Keap1 regulated the basal GST Al1 expression during Caco-2 differentiation via Rac1 activation on the formation of E-cadherin-mediated cell-cell adhesion. The results of this study suggest the involvement of a novel Keap1-dependent signaling pathway for the induction of the constitutive GST A1 expression during epithelial cell differentiation.
AB - Kelch-like ECH-associated protein 1 (Keap1), a BTB-Kelch substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex, regulates the induction of the phase 2 enzymes, such as glutathione S-transferase (GST), by repressing the transcription factor Nrf2. It is known that, in the human gastrointestinal tract, both GST A1 and P1 are constitutively expressed as the major GST isozymes. In the present study, using the Keap1-overexpressing derivatives of Caco-2 cells, human carcinoma cell line of colonic origin, by stable transfection of wild type Keap1, we investigated the molecular mechanism underlying the constitutive expression of these GST isozymes during differentiation. It was revealed that the overexpression of Keap1 completely repressed the constitutive expression of GST A1, but not GST P1. In Keap1-overexpressed cells, dome formation disappeared, and the formation of the intact actin cytoskeletal organization at cell-cell contact sites and the recruitment of E-cadherin and β-catenin to adherens junctions were inhibited. The constitutive GST A1 expression in Caco-2 cells was repressed by disruption of E-cadherin-mediated cell-cell adhesion, suggesting the correlation between epithelial cell polarization and induction of the basal GST A1 expressions during Caco-2 differentiation. Keap1 overexpression indeed inhibited the activation of the small guanosine triphosphatase Rac1 on the formation of E-cadherin-mediated cell-cell adhesion. The transfection of V12Rac1, the constitutively active Rac1 mutant, into Keap1-overexpressed cells promoted the basal GST A1 expression, suggesting that Keap1 regulated the basal GST Al1 expression during Caco-2 differentiation via Rac1 activation on the formation of E-cadherin-mediated cell-cell adhesion. The results of this study suggest the involvement of a novel Keap1-dependent signaling pathway for the induction of the constitutive GST A1 expression during epithelial cell differentiation.
UR - http://www.scopus.com/inward/record.url?scp=44949199384&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44949199384&partnerID=8YFLogxK
U2 - 10.1021/bi800199z
DO - 10.1021/bi800199z
M3 - Article
C2 - 18476723
AN - SCOPUS:44949199384
SN - 0006-2960
VL - 47
SP - 6169
EP - 6177
JO - Biochemistry
JF - Biochemistry
IS - 23
ER -