Abstract
The kinetic theory of the drift-tearing mode in a finite-β, collisionless inhomogeneous cylindrical tokamak is investigated. It is found that 1) when the density is low, the kinetic drift-tearing modes are unstable whereas they become stabilized as the density increases, 2) the medium-m (poloidal mode number) modes have a smaller growth rate, and 3) the electron temperature gradient further stabilizes these modes. Because of the magnetic shear and the finite β value, the outgoing drift wave is associated with the tearing mode, and hence the ion Landau damping stabilizes the mode when β increases. The local current density is found to be crucial for the instability. It is noted that the stability criterion for the MHD tearing mode, [formatted text] is the jump of the logarithmic derivative of Br across the mode rational surface), is lo longer valid for kinetic tearing mode. - For future tokamak parameters, low- and medium-m (2 ≤m ≲ 50) kinetic drift-tearing modes are found to be stable in cylindrical geometry.
Original language | English |
---|---|
Pages (from-to) | 3-13 |
Number of pages | 11 |
Journal | Nuclear Fusion |
Volume | 21 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 1981 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Condensed Matter Physics