Kinetics of nitrous oxide production by denitrification in municipal solid waste

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

As one of the Nitrous Oxide (N2O) production pathways, denitrification plays an important role in regulating the emission of N2O into the atmosphere. In this study, the influences of different substrate concentrations and transient conditions on the denitrification rate and N2O-reducing activities were investigated. Results revealed that N2O production rates (i.e. denitrification rates) were stimulated by increased total organic carbon (TOC) concentration, while it was restrained under high oxygen concentrations. Moreover, the impact of nitrate concentrations on N2O production rates depended on the TOC/NO3--N ratios. All the N2O production rate data fitted well to a multiplicative Monod equation, with terms describing the influence of TOC and nitrate concentrations, and an Arrhenius-type equation. Furthermore, results demonstrated that high temperatures minimized the N2O-reducing activities in aged municipal solid waste, resulting in an accumulation of N2O. On the other hand, a transient condition caused by changing O2 concentrations may strongly influence the N2O production rates and N2O-reducing activities in solid waste. Finally, based on the results, we believe that a landfill aeration strategy properly designed to prevent rising temperatures and to cycle air injection is the key to reducing emissions of N2O during remediation of old landfills by means of in situ aeration.

Original languageEnglish
Pages (from-to)64-69
Number of pages6
JournalChemosphere
Volume125
DOIs
Publication statusPublished - Apr 1 2015

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Chemistry(all)
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'Kinetics of nitrous oxide production by denitrification in municipal solid waste'. Together they form a unique fingerprint.

Cite this