Kinetics of the reaction between Mg2Ni and hydrogen

K. Nomura, E. Akiba, S. Ono

Research output: Contribution to journalArticlepeer-review

70 Citations (Scopus)

Abstract

The reaction between Mg2Ni and hydrogen was investigated by volumetric method. The reaction was divided into two stages; the initial stage was a very rapid reaction whose rate could not be measured, the later stage was the slower step whose rate was expressed by the equation dn/DT=K′(P-Peq/t where k′ is the constant, Peq and P are hydrogen pressures at equilibrium and at time t. The reaction rate of the later stage did not depend upon temperature, content of hydrogen in the alloy, and directions of the reaction, desorption and absorption. The amount of reacted hydrogen, Δn, in the initial stage was expressed by Δn=k(Po-Peq)(ns-no where P0 is the initial hydrogen pressure, ns is a constant around 4, n0 is a ratio of H to Mg2Ni at the initiation of the run, and k is a constant. The apparent activation energy of the reaction was nearly zero. It is considered that the reaction between the alloy and gaseous hydrogen takes place on metallic Mg2Ni in the initial stage and in the later stage reaction proceeds on the deactivated site.

Original languageEnglish
Pages (from-to)295-303
Number of pages9
JournalInternational Journal of Hydrogen Energy
Volume6
Issue number3
DOIs
Publication statusPublished - Jan 1 1981
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Kinetics of the reaction between Mg2Ni and hydrogen'. Together they form a unique fingerprint.

Cite this