Abstract
The reaction between Mg2Ni and hydrogen was investigated by volumetric method. The reaction was divided into two stages; the initial stage was a very rapid reaction whose rate could not be measured, the later stage was the slower step whose rate was expressed by the equation dn/DT=K′(P-Peq/t where k′ is the constant, Peq and P are hydrogen pressures at equilibrium and at time t. The reaction rate of the later stage did not depend upon temperature, content of hydrogen in the alloy, and directions of the reaction, desorption and absorption. The amount of reacted hydrogen, Δn, in the initial stage was expressed by Δn=k(Po-Peq)(ns-no where P0 is the initial hydrogen pressure, ns is a constant around 4, n0 is a ratio of H to Mg2Ni at the initiation of the run, and k is a constant. The apparent activation energy of the reaction was nearly zero. It is considered that the reaction between the alloy and gaseous hydrogen takes place on metallic Mg2Ni in the initial stage and in the later stage reaction proceeds on the deactivated site.
Original language | English |
---|---|
Pages (from-to) | 295-303 |
Number of pages | 9 |
Journal | International Journal of Hydrogen Energy |
Volume | 6 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jan 1 1981 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology