Laccase-mediator system for enzymatic degradation of carbonaceous matter in the sequential pretreatment of double refractory gold ore from Syama mine, Mali

Ryotaro Sakai, Diego M. Mendoza, Kojo T. Konadu, Cindy, Yuji Aoki, Tsuyoshi Hirajima, Hirofumi Ichinose, Keiko Sasaki

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The sequential bio-treatment of refractory carbonaceous gold ore is a promising solution to recover gold effectively by environmentally friendly technology, which includes bio-oxidation of sulfide and biodegradation of carbonaceous matter by lignin-degrading enzymes. There are several drawbacks in enzyme treatment using cell-free spent medium (CFSM), including lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium, in particular the poor stability of enzyme activities. In the present work, laccase-mediator system (LMS) was applied for the degradation of carbonaceous matter in real gold ore to improve the efficiency of gold extraction as well as handling. The LMS was intended to be a great alternative process of CFSM with utilizing purified laccase in the presence of 1-hydroxybenzotriazole as a mediator. The application of LMS provided several advantages including not only greater stability, greater efficiency to degrade carbonaceous matter, better handling, much saving the treatment time, but also wider availability in laccase. In addition, replacing bio-oxidation with ferric chloride leaching as the dissolution path of sulfides facilitated avoiding the formation of jarosite and saving the required time. The gold recovery by cyanidation was improved from 41.5 ± 0.3% for the starting material to 81.3 ± 3.9% (n = 2) for the solid residues after the modified sequential pretreatment. This is correspondent to 86.3% of gold recovery for the extractable maximum gold excluding the enclosed gold in acid-insoluble silicates. The improved process involving LMS can be proposed with valuable advantages to fit a sustainable metallurgical technology of gold ores.

Original languageEnglish
Article number105894
JournalHydrometallurgy
Volume212
DOIs
Publication statusPublished - Jun 2022

All Science Journal Classification (ASJC) codes

  • Metals and Alloys
  • Industrial and Manufacturing Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Laccase-mediator system for enzymatic degradation of carbonaceous matter in the sequential pretreatment of double refractory gold ore from Syama mine, Mali'. Together they form a unique fingerprint.

Cite this