Laser Thomson Scattering Diagnostics for Streamer Discharge in HE Gas

K. Eguchi, R. Fujita, D. Wang, K. Tomita, T. Namihira

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Streamer discharge plasma, a type of non-Thermal plasma, has received global attention as a source of reactive radicals, and is used for many applications such as ozone generation, decomposition of NOx and other gas pollutants, cleaning water, disinfection, deodorization, and medical applications. The tip of streamer discharge, known as the streamer head, in particular contributes to radical production. The peak electric field is located on the streamer head on the axis of symmetry of the discharge, likely resulting in many radical types. Very remarkable results in NO removal efficiency and superior ozone generation yield performed by streamer discharge have reported. Improving gas treatment methods requires understanding of physical characteristics of streamer discharge and streamer head, for example, electron temperature and electron density. This study investigates characteristics of streamer discharge by observing the propagation process of streamer head in a needle to conic electrode with positive voltage using a high speed gated emICCD camera. Then, incoherent laser Thomson scattering (LTS) diagnostic for streamer discharge and streamer head with positive voltage was performed. LTS diagnostic is considered to be the most reliable technique measuring electron temperature and density in plasma simultaneously. In addition, LTS diagnostic has high resolution temporally and spatially, therefore, LTS diagnostic can measure location dependence of electron temperature and density in streamer discharge including streamer head. The measurement point was 1 mm and 2 mm from tip of the high voltage needle electrode, and Thomson scattering signals were measured at the point of initial phase of streamer head propagation. In the results, electron temperature of streamer discharge was 4 to 6 eV, electron density of streamer discharge was 1021 m-3 order. This study has proven that LTS diagnostic can measure electron temperature and density in streamer discharge plasma.

Original languageEnglish
Title of host publication2019 IEEE Pulsed Power and Plasma Science, PPPS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538679692
DOIs
Publication statusPublished - Jun 2019
Event2019 IEEE Pulsed Power and Plasma Science, PPPS 2019 - Orlando, United States
Duration: Jun 23 2019Jun 29 2019

Publication series

NameIEEE International Pulsed Power Conference
Volume2019-June
ISSN (Print)2158-4915
ISSN (Electronic)2158-4923

Conference

Conference2019 IEEE Pulsed Power and Plasma Science, PPPS 2019
Country/TerritoryUnited States
CityOrlando
Period6/23/196/29/19

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Laser Thomson Scattering Diagnostics for Streamer Discharge in HE Gas'. Together they form a unique fingerprint.

Cite this