Leakage current and chemical potential profile in proton-conducting bi-layered solid oxide electrolyte with Bzy and hole-blocking layers

Y. Matsuzaki, Y. Tachikawa, Y. Baba, K. Sato, H. Iinuma, G. Kojo, H. Matsuo, J. Otomo, H. Matsumoto, S. Taniguchi, K. Sasaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Solid oxide fuel cells (SOFCs) with proton-conducting solid electrolyte, instead of the oxide-ion conducting solid electrolyte have attracted attentions because of their high potential to reduce operating temperatures and to enhance the electrical efficiencies of SOFCs. In addition, the proton-conducting SOFCs with multistage electrochemical oxidation configuration will be promising technology for critically-high electric efficiencies. However, it is known that there are non-negligible charge -carriers other than protons in typical proton-conducting solid oxide electrolytes at relatively high temperatures. The existence of the partial conductivities of holes and/or electrons will cause the internal leakage current that consumes fuel but never generates any electrical power output. The higher ratio of the leakage current to external current will more deteriorate the electrical efficiency. In this study, the effects of blocking -layers formed on the air side surface of base electrolyte layer consisting of BaZr0.8Y0.2O3-δ (BZY82) for suppressing the leakage current have been investigated by using electrochemical parameters of the partial conduction of the materials. The chemical potential profile and leakage current showed large dependence on the material of the blocking -layer. Lanthanum tungstate was found to play a role as unique and strong blocking -layer against the leakage current.

Original languageEnglish
Title of host publicationSolid Oxide Fuel Cells 16, SOFC 2019
EditorsK. Eguchi, S. C. Singhal
PublisherElectrochemical Society Inc.
Pages1009-1018
Number of pages10
Edition1
ISBN (Electronic)9781607688747, 9781607688747
DOIs
Publication statusPublished - 2019
Event16th International Symposium on Solid Oxide Fuel Cells, SOFC 2019 - Kyoto, Japan
Duration: Sept 8 2019Sept 13 2019

Publication series

NameECS Transactions
Number1
Volume91
ISSN (Print)1938-6737
ISSN (Electronic)1938-5862

Conference

Conference16th International Symposium on Solid Oxide Fuel Cells, SOFC 2019
Country/TerritoryJapan
CityKyoto
Period9/8/199/13/19

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Leakage current and chemical potential profile in proton-conducting bi-layered solid oxide electrolyte with Bzy and hole-blocking layers'. Together they form a unique fingerprint.

Cite this