Learning to Adversarially Blur Visual Object Tracking

Qing Guo, Ziyi Cheng, Felix Juefei-Xu, Lei Ma, Xiaofei Xie, Yang Liu, Jianjun Zhao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

Motion blur caused by the moving of the object or camera during the exposure can be a key challenge for visual object tracking, affecting tracking accuracy significantly. In this work, we explore the robustness of visual object trackers against motion blur from a new angle, i.e., adversarial blur attack (ABA). Our main objective is to online transfer input frames to their natural motion-blurred counterparts while misleading the state-of-the-art trackers during the tracking process. To this end, we first design the motion blur synthesizing method for visual tracking based on the generation principle of motion blur, considering the motion information and the light accumulation process. With this synthetic method, we propose optimization-based ABA (OP-ABA) by iteratively optimizing an adversarial objective function against the tracking w.r.t. the motion and light accumulation parameters. The OP-ABA is able to produce natural adversarial examples but the iteration can cause heavy time cost, making it unsuitable for attacking real-time trackers. To alleviate this issue, we further propose one-step ABA (OS-ABA) where we design and train a joint adversarial motion and accumulation predictive network (JAMANet) with the guidance of OP-ABA, which is able to efficiently estimate the adversarial motion and accumulation parameters in a one-step way. The experiments on four popular datasets (e.g., OTB100, VOT2018, UAV123, and LaSOT) demonstrate that our methods are able to cause significant accuracy drops on four state-of-the-art trackers with high transferability. Please find the source code at https://github.com/tsingqguo/ABA.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10819-10828
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Learning to Adversarially Blur Visual Object Tracking'. Together they form a unique fingerprint.

Cite this