TY - GEN
T1 - Leukemia detection mechanism through microscopic image and ML techniques
AU - Akter Hossain, Mohammad
AU - Islam Sabik, Mubtasim
AU - Muntasir, Ikramuzzaman
AU - Muzahidul Islam, A. K.M.
AU - Islam, Salekul
AU - Ahmed, Ashir
N1 - Funding Information:
ACKNOWLEDGEMENT This project is partially supported by Institute of Advance research of United International University (UIU) Research Project No. UIU/IAR/02/2019-20/SE/07.
Publisher Copyright:
© 2020 IEEE.
PY - 2020/11/16
Y1 - 2020/11/16
N2 - It is reported that since 2016 there are over sixty thousand diagnosed cases of Leukemia in the United States of America alone. It also suggests that Leukemia is the most common type of cancer seen in the age of twenty. Although the study is based on a Western country, it is equally alarming for an Asian country like Bangladesh where healthcare system is not up to the standard. Researches show that the Chronic Lymphocytic Leukemia has about 83% five-year long survival rates. This paper focuses on Acute Lymphocytic Leukemia (ALL) as this is the most common type of Leukemia in Bangladesh. It is common knowledge among oncologists, that cancer is much easier to treat if it is detected in the early stages. Thus the treatment needs to begin as early as possible. We propose a hands-on approach in detecting the irregular blood components (e.g., Neutrophils, Eosinophils, Basophils, Lymphocytes and Monocytes) that are typically found in a cancer patient. In this work, we first identify 14 attributes to prepare the dataset and determine 4 major attributes that play a significant role in determining a Leukemia patient. We have also collected 256 primary data from Leukemia patient. The data is then processed using microscope to obtain images and fetch into Faster-RCNN machine learning algorithm to predict the odds of cancer cells forming. Here we have applied two loss functions to both the RPN (Region Convolutional Neural Network) model and the classifier model to detect the similar blood object. After identifying the object, we have calculated the corresponding object and based on the count of the corresponding object we finally detect Leukemia. The mean average precision observed are 0.10, 0.16 and 0, where the epochs are 40, 60 and 120, respectively.
AB - It is reported that since 2016 there are over sixty thousand diagnosed cases of Leukemia in the United States of America alone. It also suggests that Leukemia is the most common type of cancer seen in the age of twenty. Although the study is based on a Western country, it is equally alarming for an Asian country like Bangladesh where healthcare system is not up to the standard. Researches show that the Chronic Lymphocytic Leukemia has about 83% five-year long survival rates. This paper focuses on Acute Lymphocytic Leukemia (ALL) as this is the most common type of Leukemia in Bangladesh. It is common knowledge among oncologists, that cancer is much easier to treat if it is detected in the early stages. Thus the treatment needs to begin as early as possible. We propose a hands-on approach in detecting the irregular blood components (e.g., Neutrophils, Eosinophils, Basophils, Lymphocytes and Monocytes) that are typically found in a cancer patient. In this work, we first identify 14 attributes to prepare the dataset and determine 4 major attributes that play a significant role in determining a Leukemia patient. We have also collected 256 primary data from Leukemia patient. The data is then processed using microscope to obtain images and fetch into Faster-RCNN machine learning algorithm to predict the odds of cancer cells forming. Here we have applied two loss functions to both the RPN (Region Convolutional Neural Network) model and the classifier model to detect the similar blood object. After identifying the object, we have calculated the corresponding object and based on the count of the corresponding object we finally detect Leukemia. The mean average precision observed are 0.10, 0.16 and 0, where the epochs are 40, 60 and 120, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85098961482&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098961482&partnerID=8YFLogxK
U2 - 10.1109/TENCON50793.2020.9293925
DO - 10.1109/TENCON50793.2020.9293925
M3 - Conference contribution
AN - SCOPUS:85098961482
T3 - IEEE Region 10 Annual International Conference, Proceedings/TENCON
SP - 61
EP - 66
BT - 2020 IEEE Region 10 Conference, TENCON 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Region 10 Conference, TENCON 2020
Y2 - 16 November 2020 through 19 November 2020
ER -