Ligand binding to human prostaglandin E receptor EP 4 at the lipid-bilayer interface

Yosuke Toyoda, Kazushi Morimoto, Ryoji Suno, Shoichiro Horita, Keitaro Yamashita, Kunio Hirata, Yusuke Sekiguchi, Satoshi Yasuda, Mitsunori Shiroishi, Tomoko Shimizu, Yuji Urushibata, Yuta Kajiwara, Tomoaki Inazumi, Yunhon Hotta, Hidetsugu Asada, Takanori Nakane, Yuki Shiimura, Tomoya Nakagita, Kyoshiro Tsuge, Suguru YoshidaTomoko Kuribara, Takamitsu Hosoya, Yukihiko Sugimoto, Norimichi Nomura, Miwa Sato, Takatsugu Hirokawa, Masahiro Kinoshita, Takeshi Murata, Kiyoshi Takayama, Masaki Yamamoto, Shuh Narumiya, So Iwata, Takuya Kobayashi

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

Prostaglandin E receptor EP4, a G-protein-coupled receptor, is involved in disorders such as cancer and autoimmune disease. Here, we report the crystal structure of human EP4 in complex with its antagonist ONO-AE3-208 and an inhibitory antibody at 3.2 Å resolution. The structure reveals that the extracellular surface is occluded by the extracellular loops and that the antagonist lies at the interface with the lipid bilayer, proximal to the highly conserved Arg316 residue in the seventh transmembrane domain. Functional and docking studies demonstrate that the natural agonist PGE 2 binds in a similar manner. This structural information also provides insight into the ligand entry pathway from the membrane bilayer to the EP4 binding pocket. Furthermore, the structure reveals that the antibody allosterically affects the ligand binding of EP4. These results should facilitate the design of new therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.

Original languageEnglish
Pages (from-to)18-26
Number of pages9
JournalNature Chemical Biology
Volume15
Issue number1
DOIs
Publication statusPublished - Jan 1 2019

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Ligand binding to human prostaglandin E receptor EP 4 at the lipid-bilayer interface'. Together they form a unique fingerprint.

Cite this