Limit of dislocation density and ultra-grain-refining on severe deformation in iron

Setsuo Takaki

Research output: Contribution to journalConference articlepeer-review

26 Citations (Scopus)


It is well-known that severe deformation to metals causes a direct grain refinement of the matrix without special heat-treatments due to the mechanism of dynamic continuous recrystallization (DCR). However, the microstructural revolution during severe deformation is seemed to be different depending on the deformation mode, namely the direction of deformation. In general, multi-directional deformation is thought to be effective for the grain refinement caused through DCR. For instance, ultra-grain-refinement to 10nm has already achieved by mechanical milling treatment in a steel powder and hardness of the mechanically milled steel powder is increased to around HV12GPa by such a marked grain refinement. On the other hand, hardness of iron never exceeds HV4GPa by the mode of uni-directional deformation such a conventional cold rolling. In this paper, a limit of dislocation density is discussed for iron which is severely strained by the mode of uni-directional deformation, and also the importance of multi-directional deformation on DCR will be mentioned in association with a significant work hardening behavior in mechanically milled iron powder.

Original languageEnglish
Pages (from-to)215-222
Number of pages8
JournalMaterials Science Forum
Issue number1
Publication statusPublished - Jan 1 2003
EventThermec 2003 Processing and Manufacturing of Advanced Materials - Madrid, Spain
Duration: Jul 7 2003Jul 11 2003

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Limit of dislocation density and ultra-grain-refining on severe deformation in iron'. Together they form a unique fingerprint.

Cite this