Linear response functions of an electrolyte solution in a uniform flow

Ram M. Adar, Yuki Uematsu, Shigeyuki Komura, David Andelman

Research output: Contribution to journalArticle

Abstract

We study the steady-state response of a dilute monovalent electrolyte solution to an external source with a constant relative velocity with respect to the fluid. The source is taken as a combination of three perturbations: an external force acting on the fluid, an externally imposed ionic chemical potential, and an external charge density. The linear response functions are obtained analytically and can be decoupled into three independent terms, corresponding to (i) fluid flow and pressure, (ii) total ionic number density and current, and (iii) charge density, electrostatic potential, and electric current. It is shown how the uniform flow breaks the equilibrium radial symmetry of the response functions, leading to a distortion of the ionic cloud and electrostatic potential, which deviates from the standard Debye-Hückel result. The potential of a moving charge is underscreened in its direction of motion and overscreened in the opposite direction and normal plane. As a result, an unscreened dipolar electric field and electric currents are induced far from the charged source. We relate our general formalism to several experimental setups, such as colloidal sedimentation.

Original languageEnglish
Article number032410
JournalPhysical Review E
Volume98
Issue number3
DOIs
Publication statusPublished - Sep 13 2018

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Cite this