Liquid-vapor phase distribution in horizontal headers with upward minichannel-branching conduits

Agung Tri Wijayanta, Takahiko Miyazaki, Shigeru Koyama

    Research output: Contribution to journalArticle

    7 Citations (Scopus)

    Abstract

    Since the refrigeration system based on carbon dioxide (CO2) as a refrigerant is near ideal, liquid-vapor phase distribution in a header type evaporator applied for CO2 has been experimentally investigated. The test section consists of a horizontal header and 3, 6 or 8 vertically upward replaceable branching conduits. The header is made of transparent polyvinyl chloride (PVC) resin for observing the flow regime, and each conduit is composed of an aluminum disk plate and an aluminum minichannel-branching conduit. In order to develop the lowest maldistribution header, several headers with various insertion depths are examined. Since the CO2 system operates at around the supercritical conditions, it is a little bit difficult to observe the flow regime for CO2 at high pressure, therefore, R134a is used as the alternative working fluid in this study. Similarity hypothesis between CO2 and R134a is proposed. The modified Baker flow pattern map (refer to Scott, 1963) is applied to define the equivalent experimental conditions for both R134a and CO2. R134a headers are tested and the experimental work is applicable to CO2. The R134a experiments were conducted at saturation temperature of about 21 °C, refrigerant mass flow range between 10 and 30 kg/h which corresponds to about 44 and 130 kg/m2 s in the 9 mm i.d. header, and average vapor quality in the test section inlet of about 0.1, 0.2, 0.3 and 0.4. The R134a vapor-liquid phase mass flows entering into the branches were measured. The predicted flow regimes at each branch inlet in the header, predicted using flow pattern map in the form of vapor quality as the abscissa versus mass velocity as the ordinate refer to Wojtan et al. (2005), were utilized to understand the observation of phase separation. The liquid-vapor phase distribution of CO2 was estimated based on the R134a experimental result.

    Original languageEnglish
    Pages (from-to)264-274
    Number of pages11
    JournalExperimental Thermal and Fluid Science
    Volume76
    DOIs
    Publication statusPublished - Sep 1 2016

    Fingerprint

    Vapors
    Liquids
    Refrigerants
    Aluminum
    Flow patterns
    Evaporators
    Refrigeration
    Polyvinyl Chloride
    Carbon Dioxide
    Polyvinyl chlorides
    Phase separation
    Carbon dioxide
    Resins
    Fluids
    Experiments
    Temperature

    All Science Journal Classification (ASJC) codes

    • Chemical Engineering(all)
    • Nuclear Energy and Engineering
    • Aerospace Engineering
    • Mechanical Engineering
    • Fluid Flow and Transfer Processes

    Cite this

    Liquid-vapor phase distribution in horizontal headers with upward minichannel-branching conduits. / Wijayanta, Agung Tri; Miyazaki, Takahiko; Koyama, Shigeru.

    In: Experimental Thermal and Fluid Science, Vol. 76, 01.09.2016, p. 264-274.

    Research output: Contribution to journalArticle

    @article{41b74354f4954ac3af4ebf47105d408c,
    title = "Liquid-vapor phase distribution in horizontal headers with upward minichannel-branching conduits",
    abstract = "Since the refrigeration system based on carbon dioxide (CO2) as a refrigerant is near ideal, liquid-vapor phase distribution in a header type evaporator applied for CO2 has been experimentally investigated. The test section consists of a horizontal header and 3, 6 or 8 vertically upward replaceable branching conduits. The header is made of transparent polyvinyl chloride (PVC) resin for observing the flow regime, and each conduit is composed of an aluminum disk plate and an aluminum minichannel-branching conduit. In order to develop the lowest maldistribution header, several headers with various insertion depths are examined. Since the CO2 system operates at around the supercritical conditions, it is a little bit difficult to observe the flow regime for CO2 at high pressure, therefore, R134a is used as the alternative working fluid in this study. Similarity hypothesis between CO2 and R134a is proposed. The modified Baker flow pattern map (refer to Scott, 1963) is applied to define the equivalent experimental conditions for both R134a and CO2. R134a headers are tested and the experimental work is applicable to CO2. The R134a experiments were conducted at saturation temperature of about 21 °C, refrigerant mass flow range between 10 and 30 kg/h which corresponds to about 44 and 130 kg/m2 s in the 9 mm i.d. header, and average vapor quality in the test section inlet of about 0.1, 0.2, 0.3 and 0.4. The R134a vapor-liquid phase mass flows entering into the branches were measured. The predicted flow regimes at each branch inlet in the header, predicted using flow pattern map in the form of vapor quality as the abscissa versus mass velocity as the ordinate refer to Wojtan et al. (2005), were utilized to understand the observation of phase separation. The liquid-vapor phase distribution of CO2 was estimated based on the R134a experimental result.",
    author = "Wijayanta, {Agung Tri} and Takahiko Miyazaki and Shigeru Koyama",
    year = "2016",
    month = "9",
    day = "1",
    doi = "10.1016/j.expthermflusci.2016.03.021",
    language = "English",
    volume = "76",
    pages = "264--274",
    journal = "Experimental Thermal and Fluid Science",
    issn = "0894-1777",
    publisher = "Elsevier Inc.",

    }

    TY - JOUR

    T1 - Liquid-vapor phase distribution in horizontal headers with upward minichannel-branching conduits

    AU - Wijayanta, Agung Tri

    AU - Miyazaki, Takahiko

    AU - Koyama, Shigeru

    PY - 2016/9/1

    Y1 - 2016/9/1

    N2 - Since the refrigeration system based on carbon dioxide (CO2) as a refrigerant is near ideal, liquid-vapor phase distribution in a header type evaporator applied for CO2 has been experimentally investigated. The test section consists of a horizontal header and 3, 6 or 8 vertically upward replaceable branching conduits. The header is made of transparent polyvinyl chloride (PVC) resin for observing the flow regime, and each conduit is composed of an aluminum disk plate and an aluminum minichannel-branching conduit. In order to develop the lowest maldistribution header, several headers with various insertion depths are examined. Since the CO2 system operates at around the supercritical conditions, it is a little bit difficult to observe the flow regime for CO2 at high pressure, therefore, R134a is used as the alternative working fluid in this study. Similarity hypothesis between CO2 and R134a is proposed. The modified Baker flow pattern map (refer to Scott, 1963) is applied to define the equivalent experimental conditions for both R134a and CO2. R134a headers are tested and the experimental work is applicable to CO2. The R134a experiments were conducted at saturation temperature of about 21 °C, refrigerant mass flow range between 10 and 30 kg/h which corresponds to about 44 and 130 kg/m2 s in the 9 mm i.d. header, and average vapor quality in the test section inlet of about 0.1, 0.2, 0.3 and 0.4. The R134a vapor-liquid phase mass flows entering into the branches were measured. The predicted flow regimes at each branch inlet in the header, predicted using flow pattern map in the form of vapor quality as the abscissa versus mass velocity as the ordinate refer to Wojtan et al. (2005), were utilized to understand the observation of phase separation. The liquid-vapor phase distribution of CO2 was estimated based on the R134a experimental result.

    AB - Since the refrigeration system based on carbon dioxide (CO2) as a refrigerant is near ideal, liquid-vapor phase distribution in a header type evaporator applied for CO2 has been experimentally investigated. The test section consists of a horizontal header and 3, 6 or 8 vertically upward replaceable branching conduits. The header is made of transparent polyvinyl chloride (PVC) resin for observing the flow regime, and each conduit is composed of an aluminum disk plate and an aluminum minichannel-branching conduit. In order to develop the lowest maldistribution header, several headers with various insertion depths are examined. Since the CO2 system operates at around the supercritical conditions, it is a little bit difficult to observe the flow regime for CO2 at high pressure, therefore, R134a is used as the alternative working fluid in this study. Similarity hypothesis between CO2 and R134a is proposed. The modified Baker flow pattern map (refer to Scott, 1963) is applied to define the equivalent experimental conditions for both R134a and CO2. R134a headers are tested and the experimental work is applicable to CO2. The R134a experiments were conducted at saturation temperature of about 21 °C, refrigerant mass flow range between 10 and 30 kg/h which corresponds to about 44 and 130 kg/m2 s in the 9 mm i.d. header, and average vapor quality in the test section inlet of about 0.1, 0.2, 0.3 and 0.4. The R134a vapor-liquid phase mass flows entering into the branches were measured. The predicted flow regimes at each branch inlet in the header, predicted using flow pattern map in the form of vapor quality as the abscissa versus mass velocity as the ordinate refer to Wojtan et al. (2005), were utilized to understand the observation of phase separation. The liquid-vapor phase distribution of CO2 was estimated based on the R134a experimental result.

    UR - http://www.scopus.com/inward/record.url?scp=84962765837&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84962765837&partnerID=8YFLogxK

    U2 - 10.1016/j.expthermflusci.2016.03.021

    DO - 10.1016/j.expthermflusci.2016.03.021

    M3 - Article

    AN - SCOPUS:84962765837

    VL - 76

    SP - 264

    EP - 274

    JO - Experimental Thermal and Fluid Science

    JF - Experimental Thermal and Fluid Science

    SN - 0894-1777

    ER -