LMI-based periodically time-varying dynamical controller synthesis for discrete-time uncertain linea

Yoshio Ebihara, Dimitri Peaucelle, Denis Arzelier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Citations (Scopus)

Abstract

In this paper, we propose a new LMI-based method for robust state-feedback controller synthesis of discrete-time linear periodic/time-invariant systems subject to polytopic uncertainties. In stark contrast with existing approaches that are confined to static controller synthesis, we explore dynamic controller synthesis and reveal a particular periodically time-varying dynamical controller structure that allows LMI-based synthesis. In particular, we prove rigorously that the proposed design method encompasses the well-known extended-LMI-based design methods as particular cases. Through numerical experiments, we demonstrate that the suggested design method is indeed effective to achieve less conservative results.

Original languageEnglish
Title of host publicationProceedings of the 17th World Congress, International Federation of Automatic Control, IFAC
Edition1 PART 1
DOIs
Publication statusPublished - Dec 1 2008
Externally publishedYes
Event17th World Congress, International Federation of Automatic Control, IFAC - Seoul, Korea, Republic of
Duration: Jul 6 2008Jul 11 2008

Publication series

NameIFAC Proceedings Volumes (IFAC-PapersOnline)
Number1 PART 1
Volume17
ISSN (Print)1474-6670

Other

Other17th World Congress, International Federation of Automatic Control, IFAC
CountryKorea, Republic of
CitySeoul
Period7/6/087/11/08

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'LMI-based periodically time-varying dynamical controller synthesis for discrete-time uncertain linea'. Together they form a unique fingerprint.

Cite this