Localized activation of the distant tail neutral line just prior to substorm onsets

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

We have found flow burst features in the nightside ionosphere that are thought to be the ionospheric signature of distant tail reconnection. These are observed to form just prior to substorm onsets. Simultaneous observations by the Goose Bay-Stokkseyri dual HF radars and DMSP satellites provide the data. Our conclusions are based on equatorward flow bursts on the nightside during two isolated substorms that followed a long period of magnetospheric inactivity associated with a northward interplanetary magnetic field. Both flow bursts start ∼60 min after the growth phase onset and last ∼10-20 min until the expansion phase onset, migrating equatorward with time. Simultaneous DMSP observations of precipitating particles show that the flow burst occurs at the polar cap boundary, suggesting that the equatorward migration corresponds to the expansion of the polar cap during the growth phase. For one event, the reconnection electric field at 400 km altitude was 14 mV/m and its longitudinal scale was 290 km, which is equivalent to a reconnection voltage of 4.1 kV. For the other event, these values were 11 mV/m (reconnection electric field), 380 km (longitudinal scale), and 4.0 kV (reconnection voltage). In addition to the reconnection signatures, we discuss implications for substorm dynamics during the final stage of the substorm growth phase. The morphology indicates that the distant tail neutral line is activated ∼1 hour after the growth phase onset and at the same time the nightside separatrix starts to move equatorward much faster than during the preceding early and middle growth phases. The 1-hour time lag would correspond to the timescale on which slow rarefaction waves from both northern and southern tail lobes converge in the equatorial magnetotail. The fast-moving separatrix on the nightside implies a rapid change of magnetotail configuration resulting from nonlinear enhancement and/or earthward movement of the cross-tail current for the last 10-20 min prior to the expansion phase onset.

Original languageEnglish
Article number98JA01037
Pages (from-to)17651-17669
Number of pages19
JournalJournal of Geophysical Research: Space Physics
Volume103
Issue numberA8
Publication statusPublished - Jan 1 1998

Fingerprint

tail
Chemical activation
activation
bursts
electric field
magnetotails
dimethylsulfoniopropionate
polar caps
magnetotail
expansion
Electric fields
signatures
DMSP satellites
magnetic fields
geese
electric fields
Ionosphere
remote sensing
interplanetary magnetic fields
Electric potential

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this

Localized activation of the distant tail neutral line just prior to substorm onsets. / Watanabe, Masakazu.

In: Journal of Geophysical Research: Space Physics, Vol. 103, No. A8, 98JA01037, 01.01.1998, p. 17651-17669.

Research output: Contribution to journalArticle

@article{7dc9f65fd295487b88a7cca438aa1f84,
title = "Localized activation of the distant tail neutral line just prior to substorm onsets",
abstract = "We have found flow burst features in the nightside ionosphere that are thought to be the ionospheric signature of distant tail reconnection. These are observed to form just prior to substorm onsets. Simultaneous observations by the Goose Bay-Stokkseyri dual HF radars and DMSP satellites provide the data. Our conclusions are based on equatorward flow bursts on the nightside during two isolated substorms that followed a long period of magnetospheric inactivity associated with a northward interplanetary magnetic field. Both flow bursts start ∼60 min after the growth phase onset and last ∼10-20 min until the expansion phase onset, migrating equatorward with time. Simultaneous DMSP observations of precipitating particles show that the flow burst occurs at the polar cap boundary, suggesting that the equatorward migration corresponds to the expansion of the polar cap during the growth phase. For one event, the reconnection electric field at 400 km altitude was 14 mV/m and its longitudinal scale was 290 km, which is equivalent to a reconnection voltage of 4.1 kV. For the other event, these values were 11 mV/m (reconnection electric field), 380 km (longitudinal scale), and 4.0 kV (reconnection voltage). In addition to the reconnection signatures, we discuss implications for substorm dynamics during the final stage of the substorm growth phase. The morphology indicates that the distant tail neutral line is activated ∼1 hour after the growth phase onset and at the same time the nightside separatrix starts to move equatorward much faster than during the preceding early and middle growth phases. The 1-hour time lag would correspond to the timescale on which slow rarefaction waves from both northern and southern tail lobes converge in the equatorial magnetotail. The fast-moving separatrix on the nightside implies a rapid change of magnetotail configuration resulting from nonlinear enhancement and/or earthward movement of the cross-tail current for the last 10-20 min prior to the expansion phase onset.",
author = "Masakazu Watanabe",
year = "1998",
month = "1",
day = "1",
language = "English",
volume = "103",
pages = "17651--17669",
journal = "Journal of Geophysical Research",
issn = "0148-0227",
publisher = "American Geophysical Union",
number = "A8",

}

TY - JOUR

T1 - Localized activation of the distant tail neutral line just prior to substorm onsets

AU - Watanabe, Masakazu

PY - 1998/1/1

Y1 - 1998/1/1

N2 - We have found flow burst features in the nightside ionosphere that are thought to be the ionospheric signature of distant tail reconnection. These are observed to form just prior to substorm onsets. Simultaneous observations by the Goose Bay-Stokkseyri dual HF radars and DMSP satellites provide the data. Our conclusions are based on equatorward flow bursts on the nightside during two isolated substorms that followed a long period of magnetospheric inactivity associated with a northward interplanetary magnetic field. Both flow bursts start ∼60 min after the growth phase onset and last ∼10-20 min until the expansion phase onset, migrating equatorward with time. Simultaneous DMSP observations of precipitating particles show that the flow burst occurs at the polar cap boundary, suggesting that the equatorward migration corresponds to the expansion of the polar cap during the growth phase. For one event, the reconnection electric field at 400 km altitude was 14 mV/m and its longitudinal scale was 290 km, which is equivalent to a reconnection voltage of 4.1 kV. For the other event, these values were 11 mV/m (reconnection electric field), 380 km (longitudinal scale), and 4.0 kV (reconnection voltage). In addition to the reconnection signatures, we discuss implications for substorm dynamics during the final stage of the substorm growth phase. The morphology indicates that the distant tail neutral line is activated ∼1 hour after the growth phase onset and at the same time the nightside separatrix starts to move equatorward much faster than during the preceding early and middle growth phases. The 1-hour time lag would correspond to the timescale on which slow rarefaction waves from both northern and southern tail lobes converge in the equatorial magnetotail. The fast-moving separatrix on the nightside implies a rapid change of magnetotail configuration resulting from nonlinear enhancement and/or earthward movement of the cross-tail current for the last 10-20 min prior to the expansion phase onset.

AB - We have found flow burst features in the nightside ionosphere that are thought to be the ionospheric signature of distant tail reconnection. These are observed to form just prior to substorm onsets. Simultaneous observations by the Goose Bay-Stokkseyri dual HF radars and DMSP satellites provide the data. Our conclusions are based on equatorward flow bursts on the nightside during two isolated substorms that followed a long period of magnetospheric inactivity associated with a northward interplanetary magnetic field. Both flow bursts start ∼60 min after the growth phase onset and last ∼10-20 min until the expansion phase onset, migrating equatorward with time. Simultaneous DMSP observations of precipitating particles show that the flow burst occurs at the polar cap boundary, suggesting that the equatorward migration corresponds to the expansion of the polar cap during the growth phase. For one event, the reconnection electric field at 400 km altitude was 14 mV/m and its longitudinal scale was 290 km, which is equivalent to a reconnection voltage of 4.1 kV. For the other event, these values were 11 mV/m (reconnection electric field), 380 km (longitudinal scale), and 4.0 kV (reconnection voltage). In addition to the reconnection signatures, we discuss implications for substorm dynamics during the final stage of the substorm growth phase. The morphology indicates that the distant tail neutral line is activated ∼1 hour after the growth phase onset and at the same time the nightside separatrix starts to move equatorward much faster than during the preceding early and middle growth phases. The 1-hour time lag would correspond to the timescale on which slow rarefaction waves from both northern and southern tail lobes converge in the equatorial magnetotail. The fast-moving separatrix on the nightside implies a rapid change of magnetotail configuration resulting from nonlinear enhancement and/or earthward movement of the cross-tail current for the last 10-20 min prior to the expansion phase onset.

UR - http://www.scopus.com/inward/record.url?scp=0013431076&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0013431076&partnerID=8YFLogxK

M3 - Article

VL - 103

SP - 17651

EP - 17669

JO - Journal of Geophysical Research

JF - Journal of Geophysical Research

SN - 0148-0227

IS - A8

M1 - 98JA01037

ER -