Long-term cyclosporin A exposure suppresses cathepsin-B and -L activity in gingival fibroblasts

Mayumi Yamaguchi, Koji Naruishi, Hisa Yamada-Naruishi, Kazuhiro Omori, Fusanori Nishimura, Shogo Takashiba

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Background: Gingival overgrowth is a common side-effect following administration of cyclosporin A. We reported previously that lysosomal protease cathepsin-L activity, but not cathepsin-B, was significantly suppressed by short-term cyclosporin A exposure in human gingival fibroblasts. Although this suppression may lead to decreased degradation of gingival connective tissue, a net increase in matrix proteins, and gingival overgrowth, the effects of cyclosporin A need to be more elucidated, considering the long-term use for patients following organ transplantation. Objective: The aim of the present study was to evaluate the effects of clinically relevant doses of cyclosporin A on cultured human gingival fibroblasts. We evaluated the effects of long-term cyclosporin A exposure on cell proliferation, mRNA expression of various proteases and both cathepsin-B and -L activity in human gingival fibroblasts. Materials and Methods: Human gingival fibroblasts were isolated from three donors' healthy gingiva and cultured from five to eight passages with or without 200 ng/ml of cyclosporin A. Proliferative activity of cyclosporin A-treated cells was examined using MTT assay. Total RNA and cellular proteins were collected for semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis and for measurement of the cathepsin-B and -L activity. Results: Long-term cyclosporin A exposure had no effects on cell proliferation. Accumulation of cathepsin-B, -H and -L mRNA was markedly suppressed by long-term cyclosporin A exposure, whereas accumulation of another lysosomal enzyme N-acetyl-β-D-glucosaminidase mRNA, which is involved in remodeling of gingival epithelium, was not apparently impaired in cyclosporin A-treated cells. Accumulation of matrix metalloprotease-1 (MMP-1) and tissue inhibitor of matrix metalloprotease-1 (TIMP-1) mRNA, which are involved in remodeling of extracellular matrix, also was not impaired. In addition, we demonstrated that long-term cyclosporin A exposure significantly suppressed not only the activity of the active form of cathepsin-(B + L) compared to the activity in non-treated cells (p = 0.0458), but also the activity of the active form of cathepsin-B (p < 0.0001) in human gingival fibroblasts. Conclusion: The decreased ability of protein degradation by not only cathepsin-L but also cathepsin-B is, at least, one of the several factors developing the cyclosporin A-induced gingival overgrowth.

Original languageEnglish
Pages (from-to)320-326
Number of pages7
JournalJournal of Periodontal Research
Volume39
Issue number5
DOIs
Publication statusPublished - Oct 1 2004
Externally publishedYes

Fingerprint

Cathepsin L
Cathepsin B
Cyclosporine
Fibroblasts
Gingival Overgrowth
Messenger RNA
Metalloproteases
Peptide Hydrolases
Cathepsin H
Cell Proliferation
Hexosaminidases
Gingiva
Organ Transplantation
Human Activities
Connective Tissue
Proteolysis
Reverse Transcription
Extracellular Matrix
Proteins

All Science Journal Classification (ASJC) codes

  • Periodontics

Cite this

Long-term cyclosporin A exposure suppresses cathepsin-B and -L activity in gingival fibroblasts. / Yamaguchi, Mayumi; Naruishi, Koji; Yamada-Naruishi, Hisa; Omori, Kazuhiro; Nishimura, Fusanori; Takashiba, Shogo.

In: Journal of Periodontal Research, Vol. 39, No. 5, 01.10.2004, p. 320-326.

Research output: Contribution to journalArticle

Yamaguchi, Mayumi ; Naruishi, Koji ; Yamada-Naruishi, Hisa ; Omori, Kazuhiro ; Nishimura, Fusanori ; Takashiba, Shogo. / Long-term cyclosporin A exposure suppresses cathepsin-B and -L activity in gingival fibroblasts. In: Journal of Periodontal Research. 2004 ; Vol. 39, No. 5. pp. 320-326.
@article{f6199c0534404ae18ea1535fa912edb1,
title = "Long-term cyclosporin A exposure suppresses cathepsin-B and -L activity in gingival fibroblasts",
abstract = "Background: Gingival overgrowth is a common side-effect following administration of cyclosporin A. We reported previously that lysosomal protease cathepsin-L activity, but not cathepsin-B, was significantly suppressed by short-term cyclosporin A exposure in human gingival fibroblasts. Although this suppression may lead to decreased degradation of gingival connective tissue, a net increase in matrix proteins, and gingival overgrowth, the effects of cyclosporin A need to be more elucidated, considering the long-term use for patients following organ transplantation. Objective: The aim of the present study was to evaluate the effects of clinically relevant doses of cyclosporin A on cultured human gingival fibroblasts. We evaluated the effects of long-term cyclosporin A exposure on cell proliferation, mRNA expression of various proteases and both cathepsin-B and -L activity in human gingival fibroblasts. Materials and Methods: Human gingival fibroblasts were isolated from three donors' healthy gingiva and cultured from five to eight passages with or without 200 ng/ml of cyclosporin A. Proliferative activity of cyclosporin A-treated cells was examined using MTT assay. Total RNA and cellular proteins were collected for semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis and for measurement of the cathepsin-B and -L activity. Results: Long-term cyclosporin A exposure had no effects on cell proliferation. Accumulation of cathepsin-B, -H and -L mRNA was markedly suppressed by long-term cyclosporin A exposure, whereas accumulation of another lysosomal enzyme N-acetyl-β-D-glucosaminidase mRNA, which is involved in remodeling of gingival epithelium, was not apparently impaired in cyclosporin A-treated cells. Accumulation of matrix metalloprotease-1 (MMP-1) and tissue inhibitor of matrix metalloprotease-1 (TIMP-1) mRNA, which are involved in remodeling of extracellular matrix, also was not impaired. In addition, we demonstrated that long-term cyclosporin A exposure significantly suppressed not only the activity of the active form of cathepsin-(B + L) compared to the activity in non-treated cells (p = 0.0458), but also the activity of the active form of cathepsin-B (p < 0.0001) in human gingival fibroblasts. Conclusion: The decreased ability of protein degradation by not only cathepsin-L but also cathepsin-B is, at least, one of the several factors developing the cyclosporin A-induced gingival overgrowth.",
author = "Mayumi Yamaguchi and Koji Naruishi and Hisa Yamada-Naruishi and Kazuhiro Omori and Fusanori Nishimura and Shogo Takashiba",
year = "2004",
month = "10",
day = "1",
doi = "10.1111/j.1600-0765.2004.00746.x",
language = "English",
volume = "39",
pages = "320--326",
journal = "Journal of Periodontal Research",
issn = "0022-3484",
publisher = "Blackwell Munksgaard",
number = "5",

}

TY - JOUR

T1 - Long-term cyclosporin A exposure suppresses cathepsin-B and -L activity in gingival fibroblasts

AU - Yamaguchi, Mayumi

AU - Naruishi, Koji

AU - Yamada-Naruishi, Hisa

AU - Omori, Kazuhiro

AU - Nishimura, Fusanori

AU - Takashiba, Shogo

PY - 2004/10/1

Y1 - 2004/10/1

N2 - Background: Gingival overgrowth is a common side-effect following administration of cyclosporin A. We reported previously that lysosomal protease cathepsin-L activity, but not cathepsin-B, was significantly suppressed by short-term cyclosporin A exposure in human gingival fibroblasts. Although this suppression may lead to decreased degradation of gingival connective tissue, a net increase in matrix proteins, and gingival overgrowth, the effects of cyclosporin A need to be more elucidated, considering the long-term use for patients following organ transplantation. Objective: The aim of the present study was to evaluate the effects of clinically relevant doses of cyclosporin A on cultured human gingival fibroblasts. We evaluated the effects of long-term cyclosporin A exposure on cell proliferation, mRNA expression of various proteases and both cathepsin-B and -L activity in human gingival fibroblasts. Materials and Methods: Human gingival fibroblasts were isolated from three donors' healthy gingiva and cultured from five to eight passages with or without 200 ng/ml of cyclosporin A. Proliferative activity of cyclosporin A-treated cells was examined using MTT assay. Total RNA and cellular proteins were collected for semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis and for measurement of the cathepsin-B and -L activity. Results: Long-term cyclosporin A exposure had no effects on cell proliferation. Accumulation of cathepsin-B, -H and -L mRNA was markedly suppressed by long-term cyclosporin A exposure, whereas accumulation of another lysosomal enzyme N-acetyl-β-D-glucosaminidase mRNA, which is involved in remodeling of gingival epithelium, was not apparently impaired in cyclosporin A-treated cells. Accumulation of matrix metalloprotease-1 (MMP-1) and tissue inhibitor of matrix metalloprotease-1 (TIMP-1) mRNA, which are involved in remodeling of extracellular matrix, also was not impaired. In addition, we demonstrated that long-term cyclosporin A exposure significantly suppressed not only the activity of the active form of cathepsin-(B + L) compared to the activity in non-treated cells (p = 0.0458), but also the activity of the active form of cathepsin-B (p < 0.0001) in human gingival fibroblasts. Conclusion: The decreased ability of protein degradation by not only cathepsin-L but also cathepsin-B is, at least, one of the several factors developing the cyclosporin A-induced gingival overgrowth.

AB - Background: Gingival overgrowth is a common side-effect following administration of cyclosporin A. We reported previously that lysosomal protease cathepsin-L activity, but not cathepsin-B, was significantly suppressed by short-term cyclosporin A exposure in human gingival fibroblasts. Although this suppression may lead to decreased degradation of gingival connective tissue, a net increase in matrix proteins, and gingival overgrowth, the effects of cyclosporin A need to be more elucidated, considering the long-term use for patients following organ transplantation. Objective: The aim of the present study was to evaluate the effects of clinically relevant doses of cyclosporin A on cultured human gingival fibroblasts. We evaluated the effects of long-term cyclosporin A exposure on cell proliferation, mRNA expression of various proteases and both cathepsin-B and -L activity in human gingival fibroblasts. Materials and Methods: Human gingival fibroblasts were isolated from three donors' healthy gingiva and cultured from five to eight passages with or without 200 ng/ml of cyclosporin A. Proliferative activity of cyclosporin A-treated cells was examined using MTT assay. Total RNA and cellular proteins were collected for semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis and for measurement of the cathepsin-B and -L activity. Results: Long-term cyclosporin A exposure had no effects on cell proliferation. Accumulation of cathepsin-B, -H and -L mRNA was markedly suppressed by long-term cyclosporin A exposure, whereas accumulation of another lysosomal enzyme N-acetyl-β-D-glucosaminidase mRNA, which is involved in remodeling of gingival epithelium, was not apparently impaired in cyclosporin A-treated cells. Accumulation of matrix metalloprotease-1 (MMP-1) and tissue inhibitor of matrix metalloprotease-1 (TIMP-1) mRNA, which are involved in remodeling of extracellular matrix, also was not impaired. In addition, we demonstrated that long-term cyclosporin A exposure significantly suppressed not only the activity of the active form of cathepsin-(B + L) compared to the activity in non-treated cells (p = 0.0458), but also the activity of the active form of cathepsin-B (p < 0.0001) in human gingival fibroblasts. Conclusion: The decreased ability of protein degradation by not only cathepsin-L but also cathepsin-B is, at least, one of the several factors developing the cyclosporin A-induced gingival overgrowth.

UR - http://www.scopus.com/inward/record.url?scp=4644222836&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4644222836&partnerID=8YFLogxK

U2 - 10.1111/j.1600-0765.2004.00746.x

DO - 10.1111/j.1600-0765.2004.00746.x

M3 - Article

C2 - 15324353

AN - SCOPUS:4644222836

VL - 39

SP - 320

EP - 326

JO - Journal of Periodontal Research

JF - Journal of Periodontal Research

SN - 0022-3484

IS - 5

ER -