Long-Term Test-Retest Reliability of Auditory Gamma Oscillations Between Different Clinical EEG Systems

Yoji Hirano, Itta Nakamura, Shunsuke Tamura, Toshiaki Onitsuka

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Objective: There is increasing interest in the utility of gamma-band activity for assessing various brain functions, including perception, language, memory, and cognition. The auditory steady-state response (ASSR) involves neural activity in the brain elicited by trains of a click sound, and its maximum response is obtained at 40 Hz (40-Hz ASSR). Abnormalities of the 40-Hz ASSR are also widely reported in patients with schizophrenia. Thus, the test-retest reliability of the ASSR is important for its clinical and translational application. However, there are only limited studies reporting the short-term reliability between acquisitions at two time points made using the same electroencephalogram (EEG) system. Furthermore, the long-term reliability between multiple EEG systems and the reliability of spontaneous gamma activity are unknown but are crucial for multicenter collaborative research. Methods: We examined the long-term test–retest reliability of 40-Hz ASSR oscillatory activities indexed by the phase locking factor (PLF), evoked power, and (non-phase-locked) induced power between two clinical 19-electrode EEG systems [recorded twice for EEG-1 (time1 and time2) and EEG-2 (time3 and time4)] at four time points from 14 healthy controls over a duration of 5 months. Test-retest reliability was examined using intraclass correlation coefficients (ICCs). Results: Both PLF and evoked power showed good to excellent ICCs (>0.60), mainly in the Fz-electrode, both within each EEG system—EEG-1 [(time1 vs. time2) PLF: ICC = 0.66, evoked power: ICC = 0.88] and EEG-2 [(time3 vs. time4) PLF: ICC = 0.82, evoked power: ICC = 0.77]—and between the two EEG systems [(EEG-1 vs. EEG-2) PLF: ICC = 0.73, evoked power: ICC = 0.84]. In contrast, induced power showed the highest (excellent) ICC between the two EEG systems (ICC = 0.95) mainly in the Cz-electrode. For PLF, the Fz-electrode showed better test-retest reliability across all EEG recordings than the Cz-electrode (Fz: ICC = 0.67, Cz: ICC = 0.63), whereas we found similar excellent reproducibility across all EEG recordings from both electrodes for evoked power (Fz: ICC = 0.79, Cz: ICC = 0.77) and induced power (Fz: ICC = 0.79, Cz: ICC = 0.80). Conclusion: The 40-Hz ASSR oscillatory activities, including induced power, showed excellent test-retest reliability, even when using different EEG systems over a duration of 5 months. These findings confirm the utility of the 40-Hz ASSR as a reliable clinical and translatable biomarker for multicenter collaborative research.

Original languageEnglish
Article number876
JournalFrontiers in Psychiatry
Volume11
DOIs
Publication statusPublished - Sep 2 2020

All Science Journal Classification (ASJC) codes

  • Psychiatry and Mental health

Fingerprint Dive into the research topics of 'Long-Term Test-Retest Reliability of Auditory Gamma Oscillations Between Different Clinical EEG Systems'. Together they form a unique fingerprint.

Cite this