TY - JOUR
T1 - Long Time Existence and Asymptotic Behavior of Solutions for the 2D Quasi-geostrophic Equation with Large Dispersive Forcing
AU - Fujii, Mikihiro
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2021/2
Y1 - 2021/2
N2 - We consider the initial value problem of the 2D dispersive quasi-geostrophic equation. We prove the long time existence of the solution for given initial data θ∈ Hs(R2) with s> 2. Moreover, we show that the solution converges to the corresponding linear dispersive solution e-AtR1θ0 when the size of dispersion parameter goes to infinity.
AB - We consider the initial value problem of the 2D dispersive quasi-geostrophic equation. We prove the long time existence of the solution for given initial data θ∈ Hs(R2) with s> 2. Moreover, we show that the solution converges to the corresponding linear dispersive solution e-AtR1θ0 when the size of dispersion parameter goes to infinity.
UR - http://www.scopus.com/inward/record.url?scp=85096505587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096505587&partnerID=8YFLogxK
U2 - 10.1007/s00021-020-00540-4
DO - 10.1007/s00021-020-00540-4
M3 - Article
AN - SCOPUS:85096505587
SN - 1422-6928
VL - 23
JO - Journal of Mathematical Fluid Mechanics
JF - Journal of Mathematical Fluid Mechanics
IS - 1
M1 - 12
ER -