Long time existence of classical solutions for the 3D incompressible rotating Euler equations

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We consider the initial value problem of the 3D incompressible rotating Euler equations. We prove the long time existence of classical solutions for initial data in Hs(ℝ3) with s > 5/2. Also, we give an upper bound of the minimum speed of rotation for the long time existence when initial data belong to H7/2(ℝ3).

Original languageEnglish
Pages (from-to)579-608
Number of pages30
JournalJournal of the Mathematical Society of Japan
Volume68
Issue number2
DOIs
Publication statusPublished - Jan 1 2016
Externally publishedYes

Fingerprint

Classical Solution
Euler Equations
Rotating
Initial Value Problem
Upper bound

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

Long time existence of classical solutions for the 3D incompressible rotating Euler equations. / Takada, Ryo.

In: Journal of the Mathematical Society of Japan, Vol. 68, No. 2, 01.01.2016, p. 579-608.

Research output: Contribution to journalArticle

@article{c185048c868f4818accf4b6b4a3ad7e9,
title = "Long time existence of classical solutions for the 3D incompressible rotating Euler equations",
abstract = "We consider the initial value problem of the 3D incompressible rotating Euler equations. We prove the long time existence of classical solutions for initial data in Hs(ℝ3) with s > 5/2. Also, we give an upper bound of the minimum speed of rotation for the long time existence when initial data belong to H7/2(ℝ3).",
author = "Ryo Takada",
year = "2016",
month = "1",
day = "1",
doi = "10.2969/jmsj/06820579",
language = "English",
volume = "68",
pages = "579--608",
journal = "Journal of the Mathematical Society of Japan",
issn = "0025-5645",
publisher = "The Mathematical Society of Japan",
number = "2",

}

TY - JOUR

T1 - Long time existence of classical solutions for the 3D incompressible rotating Euler equations

AU - Takada, Ryo

PY - 2016/1/1

Y1 - 2016/1/1

N2 - We consider the initial value problem of the 3D incompressible rotating Euler equations. We prove the long time existence of classical solutions for initial data in Hs(ℝ3) with s > 5/2. Also, we give an upper bound of the minimum speed of rotation for the long time existence when initial data belong to H7/2(ℝ3).

AB - We consider the initial value problem of the 3D incompressible rotating Euler equations. We prove the long time existence of classical solutions for initial data in Hs(ℝ3) with s > 5/2. Also, we give an upper bound of the minimum speed of rotation for the long time existence when initial data belong to H7/2(ℝ3).

UR - http://www.scopus.com/inward/record.url?scp=84970943640&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84970943640&partnerID=8YFLogxK

U2 - 10.2969/jmsj/06820579

DO - 10.2969/jmsj/06820579

M3 - Article

AN - SCOPUS:84970943640

VL - 68

SP - 579

EP - 608

JO - Journal of the Mathematical Society of Japan

JF - Journal of the Mathematical Society of Japan

SN - 0025-5645

IS - 2

ER -