Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy

Samy Carbonnel, Salar Torabi, Maximilian Griesmann, Elias Bleek, Yuhong Tang, Stefan Buchka, Veronica Basso, Mitsuru Shindo, François Didier Boyer, Trevor L. Wang, Michael Udvardi, Mark T. Waters, Caroline Gutjahr

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Karrikins (KARs), smoke-derived butenolides, are perceived by the α/β-fold hydrolase KARRIKIN INSENSITIVE2 (KAI2) and thought to mimic endogenous, yet elusive plant hormones tentatively called KAI2-ligands (KLs). The sensitivity to different karrikin types as well as the number of KAI2 paralogs varies among plant species, suggesting diversification and co-evolution of ligand-receptor relationships. We found that the genomes of legumes, comprising a number of important crops with protein-rich, nutritious seed, contain two or more KAI2 copies. We uncover sub-functionalization of the two KAI2 versions in the model legume Lotus japonicus and demonstrate differences in their ability to bind the synthetic ligand GR24ent-5DS in vitro and in genetic assays with Lotus japonicus and the heterologous Arabidopsis thaliana background. These differences can be explained by the exchange of a widely conserved phenylalanine in the binding pocket of KAI2a with a tryptophan in KAI2b, which arose independently in KAI2 proteins of several unrelated angiosperms. Furthermore, two polymorphic residues in the binding pocket are conserved across a number of legumes and may contribute to ligand binding preferences. The diversification of KAI2 binding pockets suggests the occurrence of several different KLs acting in non-fire following plants, or an escape from possible antagonistic exogenous molecules. Unexpectedly, L. japonicus responds to diverse synthetic KAI2-ligands in an organ-specific manner. Hypocotyl growth responds to KAR1, KAR2 and rac-GR24, while root system development responds only to KAR1. This differential responsiveness cannot be explained by receptor-ligand preferences alone, because LjKAI2a is sufficient for karrikin responses in the hypocotyl, while LjKAI2a and LjKAI2b operate redundantly in roots. Instead, it likely reflects differences between.

Original languageEnglish
Article numbere1009249
JournalPLoS genetics
Volume16
Issue number12 December
DOIs
Publication statusPublished - Dec 28 2020

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Fingerprint

Dive into the research topics of 'Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy'. Together they form a unique fingerprint.

Cite this