Lumbar plexus in patients with chronic inflammatory demyelinating polyneuropathy: Evaluation with 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (3D SHINKEI)

Akio Hiwatashi, Osamu Togao, Koji Yamashita, Kazufumi Kikuchi, Ryotato Kamei, Daichi Momosaka, Hidenori Ogata, Ryo Yamasaki, Masami Yoneyama, Jun ichi Kira, Hiroshi Honda

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Purpose To evaluate whether 3D SHINKEI in the lumbar plexus could identify patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Materials and methods Twenty-one patients with CIDP and 15 non-CIDP patients were studied in this retrospective study. The SNR, contrast-to-noise ratio (CNR), contrast ratio (CR) and the size of the lumbar ganglions and roots were measured. Statistical analyses were performed with Mann-Whitney U test and receiver operating characteristics (ROC) analysis. Results The SNRs of the ganglions and roots were larger in patients with CIDP (8.30 ± 4.87 and 8.24 ± 4.92) than in non-CIDP patients (4.95 ± 2.05 and 5.08 ± 1.97, P < 0.0001, respectively). The CNRs of the ganglions and roots were larger in patients with CIDP (40.79 ± 43.19 and 37.16 ± 48.31) than in non-CIDP patients (25.90 ± 10.41 and 18.37 ± 32.83, P < 0.0001, respectively). The CRs of the ganglions and roots were larger in patients with CIDP (0.74 ± 0.13 and 0.66 ± 0.17) than in non-CIDP patients (0.72 ± 0.12 and 0.50 ± 0.17, P = 0.004 and P < 0.0001, respectively). The sizes of the ganglions and the roots were larger in patients with CIDP (6.62 ± 1.81 mm and 5.76 ± 3.24 mm) than in non-CIDP patients (5.23 ± 1.17 mm and 4.24 ± 1.11 mm, P < 0.0001, respectively). ROC analysis showed the best diagnostic performance with the CNR of the roots. Conclusion Patients with CIDP could be distinguished from controls on 3D SHINKEI.

Original languageEnglish
Pages (from-to)95-99
Number of pages5
JournalEuropean Journal of Radiology
Volume93
DOIs
Publication statusPublished - Aug 2017

Fingerprint

Lumbosacral Plexus
Chronic Inflammatory Demyelinating Polyradiculoneuropathy
Polyneuropathies
Ganglia
ROC Curve
Noise
Nonparametric Statistics

All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging

Cite this

@article{73fffe7bd8934f829489e73e806120e5,
title = "Lumbar plexus in patients with chronic inflammatory demyelinating polyneuropathy: Evaluation with 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (3D SHINKEI)",
abstract = "Purpose To evaluate whether 3D SHINKEI in the lumbar plexus could identify patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Materials and methods Twenty-one patients with CIDP and 15 non-CIDP patients were studied in this retrospective study. The SNR, contrast-to-noise ratio (CNR), contrast ratio (CR) and the size of the lumbar ganglions and roots were measured. Statistical analyses were performed with Mann-Whitney U test and receiver operating characteristics (ROC) analysis. Results The SNRs of the ganglions and roots were larger in patients with CIDP (8.30 ± 4.87 and 8.24 ± 4.92) than in non-CIDP patients (4.95 ± 2.05 and 5.08 ± 1.97, P < 0.0001, respectively). The CNRs of the ganglions and roots were larger in patients with CIDP (40.79 ± 43.19 and 37.16 ± 48.31) than in non-CIDP patients (25.90 ± 10.41 and 18.37 ± 32.83, P < 0.0001, respectively). The CRs of the ganglions and roots were larger in patients with CIDP (0.74 ± 0.13 and 0.66 ± 0.17) than in non-CIDP patients (0.72 ± 0.12 and 0.50 ± 0.17, P = 0.004 and P < 0.0001, respectively). The sizes of the ganglions and the roots were larger in patients with CIDP (6.62 ± 1.81 mm and 5.76 ± 3.24 mm) than in non-CIDP patients (5.23 ± 1.17 mm and 4.24 ± 1.11 mm, P < 0.0001, respectively). ROC analysis showed the best diagnostic performance with the CNR of the roots. Conclusion Patients with CIDP could be distinguished from controls on 3D SHINKEI.",
author = "Akio Hiwatashi and Osamu Togao and Koji Yamashita and Kazufumi Kikuchi and Ryotato Kamei and Daichi Momosaka and Hidenori Ogata and Ryo Yamasaki and Masami Yoneyama and Kira, {Jun ichi} and Hiroshi Honda",
year = "2017",
month = "8",
doi = "10.1016/j.ejrad.2017.05.031",
language = "English",
volume = "93",
pages = "95--99",
journal = "European Journal of Radiology",
issn = "0720-048X",
publisher = "Elsevier Ireland Ltd",

}

TY - JOUR

T1 - Lumbar plexus in patients with chronic inflammatory demyelinating polyneuropathy

T2 - Evaluation with 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (3D SHINKEI)

AU - Hiwatashi, Akio

AU - Togao, Osamu

AU - Yamashita, Koji

AU - Kikuchi, Kazufumi

AU - Kamei, Ryotato

AU - Momosaka, Daichi

AU - Ogata, Hidenori

AU - Yamasaki, Ryo

AU - Yoneyama, Masami

AU - Kira, Jun ichi

AU - Honda, Hiroshi

PY - 2017/8

Y1 - 2017/8

N2 - Purpose To evaluate whether 3D SHINKEI in the lumbar plexus could identify patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Materials and methods Twenty-one patients with CIDP and 15 non-CIDP patients were studied in this retrospective study. The SNR, contrast-to-noise ratio (CNR), contrast ratio (CR) and the size of the lumbar ganglions and roots were measured. Statistical analyses were performed with Mann-Whitney U test and receiver operating characteristics (ROC) analysis. Results The SNRs of the ganglions and roots were larger in patients with CIDP (8.30 ± 4.87 and 8.24 ± 4.92) than in non-CIDP patients (4.95 ± 2.05 and 5.08 ± 1.97, P < 0.0001, respectively). The CNRs of the ganglions and roots were larger in patients with CIDP (40.79 ± 43.19 and 37.16 ± 48.31) than in non-CIDP patients (25.90 ± 10.41 and 18.37 ± 32.83, P < 0.0001, respectively). The CRs of the ganglions and roots were larger in patients with CIDP (0.74 ± 0.13 and 0.66 ± 0.17) than in non-CIDP patients (0.72 ± 0.12 and 0.50 ± 0.17, P = 0.004 and P < 0.0001, respectively). The sizes of the ganglions and the roots were larger in patients with CIDP (6.62 ± 1.81 mm and 5.76 ± 3.24 mm) than in non-CIDP patients (5.23 ± 1.17 mm and 4.24 ± 1.11 mm, P < 0.0001, respectively). ROC analysis showed the best diagnostic performance with the CNR of the roots. Conclusion Patients with CIDP could be distinguished from controls on 3D SHINKEI.

AB - Purpose To evaluate whether 3D SHINKEI in the lumbar plexus could identify patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Materials and methods Twenty-one patients with CIDP and 15 non-CIDP patients were studied in this retrospective study. The SNR, contrast-to-noise ratio (CNR), contrast ratio (CR) and the size of the lumbar ganglions and roots were measured. Statistical analyses were performed with Mann-Whitney U test and receiver operating characteristics (ROC) analysis. Results The SNRs of the ganglions and roots were larger in patients with CIDP (8.30 ± 4.87 and 8.24 ± 4.92) than in non-CIDP patients (4.95 ± 2.05 and 5.08 ± 1.97, P < 0.0001, respectively). The CNRs of the ganglions and roots were larger in patients with CIDP (40.79 ± 43.19 and 37.16 ± 48.31) than in non-CIDP patients (25.90 ± 10.41 and 18.37 ± 32.83, P < 0.0001, respectively). The CRs of the ganglions and roots were larger in patients with CIDP (0.74 ± 0.13 and 0.66 ± 0.17) than in non-CIDP patients (0.72 ± 0.12 and 0.50 ± 0.17, P = 0.004 and P < 0.0001, respectively). The sizes of the ganglions and the roots were larger in patients with CIDP (6.62 ± 1.81 mm and 5.76 ± 3.24 mm) than in non-CIDP patients (5.23 ± 1.17 mm and 4.24 ± 1.11 mm, P < 0.0001, respectively). ROC analysis showed the best diagnostic performance with the CNR of the roots. Conclusion Patients with CIDP could be distinguished from controls on 3D SHINKEI.

UR - http://www.scopus.com/inward/record.url?scp=85020022101&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85020022101&partnerID=8YFLogxK

U2 - 10.1016/j.ejrad.2017.05.031

DO - 10.1016/j.ejrad.2017.05.031

M3 - Article

C2 - 28668438

AN - SCOPUS:85020022101

VL - 93

SP - 95

EP - 99

JO - European Journal of Radiology

JF - European Journal of Radiology

SN - 0720-048X

ER -