Lyndon factorization of grammar compressed texts revisited

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.

Original languageEnglish
Title of host publication29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
EditorsBinhai Zhu, Gonzalo Navarro, David Sankoff
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Pages241-2410
Number of pages2170
ISBN (Electronic)9783959770743
DOIs
Publication statusPublished - May 1 2018
Event29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 - Qingdao, China
Duration: Jul 2 2018Jul 4 2018

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume105
ISSN (Print)1868-8969

Other

Other29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
CountryChina
CityQingdao
Period7/2/187/4/18

Fingerprint

Factorization
Data structures
Processing

All Science Journal Classification (ASJC) codes

  • Software

Cite this

Furuya, I., Nakashima, Y., I, T., Inenaga, S., Bannai, H., & Takeda, M. (2018). Lyndon factorization of grammar compressed texts revisited. In B. Zhu, G. Navarro, & D. Sankoff (Eds.), 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 (pp. 241-2410). (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 105). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2018.24

Lyndon factorization of grammar compressed texts revisited. / Furuya, Isamu; Nakashima, Yuto; I, Tomohiro; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki.

29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. ed. / Binhai Zhu; Gonzalo Navarro; David Sankoff. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. p. 241-2410 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 105).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Furuya, I, Nakashima, Y, I, T, Inenaga, S, Bannai, H & Takeda, M 2018, Lyndon factorization of grammar compressed texts revisited. in B Zhu, G Navarro & D Sankoff (eds), 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. Leibniz International Proceedings in Informatics, LIPIcs, vol. 105, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 241-2410, 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018, Qingdao, China, 7/2/18. https://doi.org/10.4230/LIPIcs.CPM.2018.24
Furuya I, Nakashima Y, I T, Inenaga S, Bannai H, Takeda M. Lyndon factorization of grammar compressed texts revisited. In Zhu B, Navarro G, Sankoff D, editors, 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2018. p. 241-2410. (Leibniz International Proceedings in Informatics, LIPIcs). https://doi.org/10.4230/LIPIcs.CPM.2018.24
Furuya, Isamu ; Nakashima, Yuto ; I, Tomohiro ; Inenaga, Shunsuke ; Bannai, Hideo ; Takeda, Masayuki. / Lyndon factorization of grammar compressed texts revisited. 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. editor / Binhai Zhu ; Gonzalo Navarro ; David Sankoff. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. pp. 241-2410 (Leibniz International Proceedings in Informatics, LIPIcs).
@inproceedings{4fe00b2b0d784f278b8b99a355907173,
title = "Lyndon factorization of grammar compressed texts revisited",
abstract = "We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.",
author = "Isamu Furuya and Yuto Nakashima and Tomohiro I and Shunsuke Inenaga and Hideo Bannai and Masayuki Takeda",
year = "2018",
month = "5",
day = "1",
doi = "10.4230/LIPIcs.CPM.2018.24",
language = "English",
series = "Leibniz International Proceedings in Informatics, LIPIcs",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
pages = "241--2410",
editor = "Binhai Zhu and Gonzalo Navarro and David Sankoff",
booktitle = "29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018",

}

TY - GEN

T1 - Lyndon factorization of grammar compressed texts revisited

AU - Furuya, Isamu

AU - Nakashima, Yuto

AU - I, Tomohiro

AU - Inenaga, Shunsuke

AU - Bannai, Hideo

AU - Takeda, Masayuki

PY - 2018/5/1

Y1 - 2018/5/1

N2 - We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.

AB - We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.

UR - http://www.scopus.com/inward/record.url?scp=85048271134&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048271134&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.CPM.2018.24

DO - 10.4230/LIPIcs.CPM.2018.24

M3 - Conference contribution

T3 - Leibniz International Proceedings in Informatics, LIPIcs

SP - 241

EP - 2410

BT - 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018

A2 - Zhu, Binhai

A2 - Navarro, Gonzalo

A2 - Sankoff, David

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

ER -