Macroscopic Polarization Change via Electron Transfer in a Valence Tautomeric Cobalt Complex

Shu Qi Wu, Meijiao Liu, Kaige Gao, Shinji Kanegawa, Yusuke Horie, Genki Aoyama, Hajime Okajima, Akira Sakamoto, Michael L. Baker, Myron S. Huzan, Peter Bencok, Tsukasa Abe, Yoshihito Shiota, Kazunari Yoshizawa, Wenhuang Xu, Hui Zhong Kou, Osamu Sato

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Polarization change induced by directional electron transfer attracts considerable attention owing to its fast switching rate and potential light control. Here, we investigate electronic pyroelectricity in the crystal of a mononuclear complex, [Co(phendiox)(rac-cth)](ClO4)·0.5EtOH (1·0.5EtOH, H2phendiox = 9, 10-dihydroxyphenanthrene, rac-cth = racemic 5, 5, 7, 12, 12, 14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane), which undergoes a two-step valence tautomerism (VT). Correspondingly, pyroelectric current exhibits double peaks in the same temperature domain with the polarization change consistent with the change in dipole moments during the VT process. Time-resolved Infrared (IR) spectroscopy shows that the photo-induced metastable state can be generated within 150 ps at 190 K. Such state can be trapped for tens of minutes at 7 K, showing that photo-induced polarization change can be realized in this system. These results directly demonstrate that a change in the molecular dipole moments induced by intramolecular electron transfer can introduce a macroscopic polarization change in VT compounds.

Original languageEnglish
Article number1992
JournalNature communications
Volume11
Issue number1
DOIs
Publication statusPublished - Dec 1 2020

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Macroscopic Polarization Change via Electron Transfer in a Valence Tautomeric Cobalt Complex'. Together they form a unique fingerprint.

Cite this