Manifold-based robust stationkeeping of libration-point orbit with navigational uncertainty

Y. Zhou, M. Bando, S. Hokamoto, P. L. Wu

Research output: Contribution to journalConference articlepeer-review

Abstract

This paper investigated the manifold-based robust stationkeeping approach for the halo orbit near the Earth-Moon L2 point in the ephemeris model. The well-known Hamiltonian structure-preserved (HSP) method is utilized to design the controller for stationkeeping. However, conventional HSP method is proposed under the ideal condition, where the equations of motion are constructed in the circular restricted three-body problem, and the navigational uncertainty is not considered as well. Actually, these uncertainties always exist and have significant influence on the performance of stationkeeping. To make the results more realistic, the dynamics in the ephemeris model is used to describe the motion of a spacecraft. A filtering structure-based navigation is incorporated in the stationkeeping, where the navigational uncertainty is introduced. In addition, the navigation filter is reformed to compensate for the control uncertainty. Simulation is performed to observe the influence of the control gain and the magnitude of the uncertainty on the stationkeeping performance.

Original languageEnglish
Article numberIAC-19_C1_9_10_x50194
JournalProceedings of the International Astronautical Congress, IAC
Volume2019-October
Publication statusPublished - 2019
Event70th International Astronautical Congress, IAC 2019 - Washington, United States
Duration: Oct 21 2019Oct 25 2019

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Manifold-based robust stationkeeping of libration-point orbit with navigational uncertainty'. Together they form a unique fingerprint.

Cite this