Mapping of histone-binding sites in histone replacement-completed spermatozoa

Keisuke Yoshida, Masafumi Muratani, Hiromitsu Araki, Fumihito Miura, Takehiro Suzuki, Naoshi Dohmae, Yuki Katou, Katsuhiko Shirahige, Takashi Ito, Shunsuke Ishii

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The majority of histones are replaced by protamines during spermatogenesis, but small amounts are retained in mammalian spermatozoa. Since nucleosomes in spermatozoa influence epigenetic inheritance, it is important to know how histones are distributed in the sperm genome. Conflicting data, which may result from different conditions used for micrococcal nuclease (MNase) digestion, have been reported: retention of nucleosomes at either gene promoter regions or within distal gene-poor regions. Here, we find that the swim-up sperm used in many studies contain about 10% population of sperm which have not yet completed the histone-to-protamine replacement. We develop a method to purify histone replacement-completed sperm (HRCS) and to completely solubilize histones from cross-linked HRCS without MNase digestion. Our results indicate that histones are retained at specific promoter regions in HRCS. This method allows the study of epigenetic status in mature sperm.

Original languageEnglish
Article number3885
JournalNature communications
Volume9
Issue number1
DOIs
Publication statusPublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Mapping of histone-binding sites in histone replacement-completed spermatozoa'. Together they form a unique fingerprint.

Cite this