Martian Moons eXploration transfer analysis between planar and spatial QSOs around Phobos

Nishanth Pushparaj, Nicola Baresi, Yasuhiro Kawakatsu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Quasi-satellite orbits (QSO) are stable retrograde parking orbits around Phobos that are currently being considered for JAXA's upcoming robotic sample return mission MMX. During the proximity operations of MMX, the spacecraft inserted in a high altitude QSO will gradually descend to lower altitude QSOs with suitable transfer and station-keeping techniques between different relative QSOs. Preliminary analysis of two-impulsive planar transfers between relative retrograde orbits utilizing the bifurcated QSOs families is studied to estimate the DV costs and time of flights of the transfers. In spatial transfer problem, trajectories utilizing the invariant manifolds of unstable 3D-QSOs are weakly to highly unstable and require additional station-keeping strategies to perform MMX scientific observations. These transfer trajectories have a longer flight time and might need minor correction maneuvers along the transfer paths. In this paper, an orbital maintenance strategy that suppresses and eliminates linear dynamical instability of the unstable 3D-QSOs has been considered for shortlisting feasible 3D-QSOs for high-latitude observations. Differently from previous works, we utilize the initial guesses found through the preliminary results that provide two-impulsive transfer DV execution points and optimize the transfers between relative QSOs around Phobos. Primer vector theory is applied to investigate the primer vector of the transfer trajectories to evaluate whether intermediate maneuver or initial/final coasting times along the trajectories can minimize the total DV cost between the transfers.

Original languageEnglish
Title of host publicationIAF Astrodynamics Symposium 2021 - Held at the 72nd International Astronautical Congress, IAC 2021
PublisherInternational Astronautical Federation, IAF
ISBN (Electronic)9781713843078
Publication statusPublished - 2021
Externally publishedYes
EventIAF Astrodynamics Symposium 2021 at the 72nd International Astronautical Congress, IAC 2021 - Dubai, United Arab Emirates
Duration: Oct 25 2021Oct 29 2021

Publication series

NameProceedings of the International Astronautical Congress, IAC
VolumeC1
ISSN (Print)0074-1795

Conference

ConferenceIAF Astrodynamics Symposium 2021 at the 72nd International Astronautical Congress, IAC 2021
Country/TerritoryUnited Arab Emirates
CityDubai
Period10/25/2110/29/21

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Martian Moons eXploration transfer analysis between planar and spatial QSOs around Phobos'. Together they form a unique fingerprint.

Cite this