Max-and min-neighborhood monopolies

Kazuhisa Makino, Masafumi Yamashita, Tiko Kameda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Given a graph G = (V,E) and a set of vertices M ⊑ V, a vertex v ϵ V is said to be controlled by M if the majority of v's neighbors (including itself) belongs to M. M is called a monopoly if every vertex v ϵ V is controlled by M. For a specified M and a range for E (E1 ⊑ E ⊑ E2), we try to determine E such that M is a monopoly in G = (V,E). We first present a polynomial algorithm for testing if such an E exists, by formulating it as a network flow problem. Assuming that a solution E does exist, we then show that a solution with the maximum or minimum |E| can be found in polynomial time, by considering them as weighted matching problems. In case there is no solution E, we want to maximize the number of vertices controlled by the given M. Unfortunately, this problem turns out to be NP-hard. We therefore design a simple approximation algorithm which guarantees an approximation ratio of 2.

Original languageEnglish
Title of host publicationAlgorithm Theory - SWAT 2000 - 7th Scandinavian Workshop on Algorithm Theory, 2000, Proceedings
EditorsMagnús M. Halldórsson
PublisherSpringer Verlag
Pages513-526
Number of pages14
ISBN (Print)3540676902, 9783540676904
DOIs
Publication statusPublished - Jan 1 2000
Event7th Scandinavian Workshop on Algorithm Theory, SWAT 2000 - Bergen, Norway
Duration: Jul 5 2000Jul 7 2000

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume1851
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other7th Scandinavian Workshop on Algorithm Theory, SWAT 2000
CountryNorway
CityBergen
Period7/5/007/7/00

Fingerprint

Network Flow Problem
Polynomial Algorithm
Matching Problem
Vertex of a graph
Polynomials
Approximation Algorithms
Polynomial time
NP-complete problem
Maximise
Approximation algorithms
Testing
Approximation
Graph in graph theory
Range of data
Design

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

Makino, K., Yamashita, M., & Kameda, T. (2000). Max-and min-neighborhood monopolies. In M. M. Halldórsson (Ed.), Algorithm Theory - SWAT 2000 - 7th Scandinavian Workshop on Algorithm Theory, 2000, Proceedings (pp. 513-526). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 1851). Springer Verlag. https://doi.org/10.1007/3-540-44985-X

Max-and min-neighborhood monopolies. / Makino, Kazuhisa; Yamashita, Masafumi; Kameda, Tiko.

Algorithm Theory - SWAT 2000 - 7th Scandinavian Workshop on Algorithm Theory, 2000, Proceedings. ed. / Magnús M. Halldórsson. Springer Verlag, 2000. p. 513-526 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 1851).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Makino, K, Yamashita, M & Kameda, T 2000, Max-and min-neighborhood monopolies. in MM Halldórsson (ed.), Algorithm Theory - SWAT 2000 - 7th Scandinavian Workshop on Algorithm Theory, 2000, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1851, Springer Verlag, pp. 513-526, 7th Scandinavian Workshop on Algorithm Theory, SWAT 2000, Bergen, Norway, 7/5/00. https://doi.org/10.1007/3-540-44985-X
Makino K, Yamashita M, Kameda T. Max-and min-neighborhood monopolies. In Halldórsson MM, editor, Algorithm Theory - SWAT 2000 - 7th Scandinavian Workshop on Algorithm Theory, 2000, Proceedings. Springer Verlag. 2000. p. 513-526. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). https://doi.org/10.1007/3-540-44985-X
Makino, Kazuhisa ; Yamashita, Masafumi ; Kameda, Tiko. / Max-and min-neighborhood monopolies. Algorithm Theory - SWAT 2000 - 7th Scandinavian Workshop on Algorithm Theory, 2000, Proceedings. editor / Magnús M. Halldórsson. Springer Verlag, 2000. pp. 513-526 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
@inproceedings{5b2a9fa1c37d44e19dd2cbbfa48a88e6,
title = "Max-and min-neighborhood monopolies",
abstract = "Given a graph G = (V,E) and a set of vertices M ⊑ V, a vertex v ϵ V is said to be controlled by M if the majority of v's neighbors (including itself) belongs to M. M is called a monopoly if every vertex v ϵ V is controlled by M. For a specified M and a range for E (E1 ⊑ E ⊑ E2), we try to determine E such that M is a monopoly in G = (V,E). We first present a polynomial algorithm for testing if such an E exists, by formulating it as a network flow problem. Assuming that a solution E does exist, we then show that a solution with the maximum or minimum |E| can be found in polynomial time, by considering them as weighted matching problems. In case there is no solution E, we want to maximize the number of vertices controlled by the given M. Unfortunately, this problem turns out to be NP-hard. We therefore design a simple approximation algorithm which guarantees an approximation ratio of 2.",
author = "Kazuhisa Makino and Masafumi Yamashita and Tiko Kameda",
year = "2000",
month = "1",
day = "1",
doi = "10.1007/3-540-44985-X",
language = "English",
isbn = "3540676902",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "513--526",
editor = "Halld{\'o}rsson, {Magn{\'u}s M.}",
booktitle = "Algorithm Theory - SWAT 2000 - 7th Scandinavian Workshop on Algorithm Theory, 2000, Proceedings",
address = "Germany",

}

TY - GEN

T1 - Max-and min-neighborhood monopolies

AU - Makino, Kazuhisa

AU - Yamashita, Masafumi

AU - Kameda, Tiko

PY - 2000/1/1

Y1 - 2000/1/1

N2 - Given a graph G = (V,E) and a set of vertices M ⊑ V, a vertex v ϵ V is said to be controlled by M if the majority of v's neighbors (including itself) belongs to M. M is called a monopoly if every vertex v ϵ V is controlled by M. For a specified M and a range for E (E1 ⊑ E ⊑ E2), we try to determine E such that M is a monopoly in G = (V,E). We first present a polynomial algorithm for testing if such an E exists, by formulating it as a network flow problem. Assuming that a solution E does exist, we then show that a solution with the maximum or minimum |E| can be found in polynomial time, by considering them as weighted matching problems. In case there is no solution E, we want to maximize the number of vertices controlled by the given M. Unfortunately, this problem turns out to be NP-hard. We therefore design a simple approximation algorithm which guarantees an approximation ratio of 2.

AB - Given a graph G = (V,E) and a set of vertices M ⊑ V, a vertex v ϵ V is said to be controlled by M if the majority of v's neighbors (including itself) belongs to M. M is called a monopoly if every vertex v ϵ V is controlled by M. For a specified M and a range for E (E1 ⊑ E ⊑ E2), we try to determine E such that M is a monopoly in G = (V,E). We first present a polynomial algorithm for testing if such an E exists, by formulating it as a network flow problem. Assuming that a solution E does exist, we then show that a solution with the maximum or minimum |E| can be found in polynomial time, by considering them as weighted matching problems. In case there is no solution E, we want to maximize the number of vertices controlled by the given M. Unfortunately, this problem turns out to be NP-hard. We therefore design a simple approximation algorithm which guarantees an approximation ratio of 2.

UR - http://www.scopus.com/inward/record.url?scp=84956869114&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84956869114&partnerID=8YFLogxK

U2 - 10.1007/3-540-44985-X

DO - 10.1007/3-540-44985-X

M3 - Conference contribution

AN - SCOPUS:84956869114

SN - 3540676902

SN - 9783540676904

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 513

EP - 526

BT - Algorithm Theory - SWAT 2000 - 7th Scandinavian Workshop on Algorithm Theory, 2000, Proceedings

A2 - Halldórsson, Magnús M.

PB - Springer Verlag

ER -