MCNTs@MnO2 Nanocomposite Cathode Integrated with Soluble O2-Carrier Co-salen in Electrolyte for High-Performance Li-Air Batteries

Xiaofei Hu, Jianbin Wang, Zifan Li, Jiaqi Wang, Duncan H. Gregory, Jun Chen

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

Li-air batteries (LABs) are promising because of their high energy density. However, LABs are troubled by large electrochemical polarization during discharge and charge, side reactions from both carbon cathode surface/peroxide product and electrolyte/superoxide intermediate, as well as the requirement for pure O2. Here we report the solution using multiwall carbon nanotubes (MCNTs)@MnO2 nanocomposite cathode integrated with N,N′-bis(salicylidene)ethylenediaminocobalt(II) (CoII-salen) in electrolyte for LABs. The advantage of such a combination is that on one hand, the coating layer of δ-MnO2 with about 2-3 nm on MCNTs@MnO2 nanocomposite catalyzes Li2O2 decomposition during charge and suppresses side reactions between product Li2O2 and MCNT surface. On the other hand, CoII-salen works as a mobile O2-carrier and accelerates Li2O2 formation through the reaciton of (CoIII-salen)2-O22- + 2Li+ + 2e- → 2CoII-salen + Li2O2. This reaction route overcomes the pure O2 limitation and avoids the formation of aggressive superoxide intermediate (O2- or LiO2), which easily attacks organic electrolyte. By using this double-catalyst system of Co-salen/MCNTs@MnO2, the lifetime of LABs is prolonged to 300 cycles at 500 mA g-1 (0.15 mA cm-2) with fixed capacity of 1000 mAh g-1 (0.30 mAh cm-2) in dry air (21% O2). Furthermore, we up-scale the capacity to 500 mAh (5.2 mAh cm-2) in pouch-type batteries (∼4 g, 325 Wh kg-1). This study should pave a new way for the design and construction of practical LABs.

Original languageEnglish
Pages (from-to)2073-2078
Number of pages6
JournalNano Letters
Volume17
Issue number3
DOIs
Publication statusPublished - Mar 8 2017

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'MCNTs@MnO<sub>2</sub> Nanocomposite Cathode Integrated with Soluble O<sub>2</sub>-Carrier Co-salen in Electrolyte for High-Performance Li-Air Batteries'. Together they form a unique fingerprint.

Cite this