TY - GEN
T1 - Mechanism of hydrogen-assisted surface crack growth of austenitic stainless steels in slow Strain rate Tensile test
AU - Matsuoka, Saburo
AU - Yamabe, Junichiro
AU - Matsunaga, Hisao
N1 - Funding Information:
This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Fundamental Research Project on Advanced Hydrogen Science (2006 to 2012) and Hydrogen Utilization Technology (2013 to 2018). The authors gratefully acknowledge the support of the International Institute for Carbon-Neutral Energy Research (I2CNER), established by the World Premier International (WPI) Research Center Initiative funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.
Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - Several criteria based on reduction in area (RA) or relative RA (RRA) are proposed for determining the hydrogen compatibility of austenitic stainless steels; however, the mechanism of hydrogen-induced degradation in RA and RRA is not necessarily clear. The degradation in the RA and RRA of the austenitic stainless steels is attributed to hydrogen-assisted surface crack growth (HASCG) accompanied by quasi-cleavages; therefore, a mechanism of the HASCG should be elucidated to establish novel criteria for authorizing various austenitic stainless steels for use in high-pressure gaseous hydrogen. To elucidate the HASCG mechanism, this study performed slow strain rate tensile (SSRT), elasto-plastic fracture toughness (JIC), fatigue crack growth (FCG) and fatigue life tests on Types 304, 316 and 316L in high-pressure hydrogen gas. Experimental results of Type 304 were provided in this paper as a representative of Types 304, 316 and 316L. The results demonstrated that the SSRT surface crack grew via the same mechanism as for the JIC and fatigue cracks, i.e., these crack growths could be uniformly explained on the basis of the hydrogen-induced successive crack growth (HISCG) model, which considers that cracks successively grow with a sharp shape under the loading process, due to local slip deformations near the crack tip by hydrogen. Accordingly, the HIS crack is ductile, not brittle.
AB - Several criteria based on reduction in area (RA) or relative RA (RRA) are proposed for determining the hydrogen compatibility of austenitic stainless steels; however, the mechanism of hydrogen-induced degradation in RA and RRA is not necessarily clear. The degradation in the RA and RRA of the austenitic stainless steels is attributed to hydrogen-assisted surface crack growth (HASCG) accompanied by quasi-cleavages; therefore, a mechanism of the HASCG should be elucidated to establish novel criteria for authorizing various austenitic stainless steels for use in high-pressure gaseous hydrogen. To elucidate the HASCG mechanism, this study performed slow strain rate tensile (SSRT), elasto-plastic fracture toughness (JIC), fatigue crack growth (FCG) and fatigue life tests on Types 304, 316 and 316L in high-pressure hydrogen gas. Experimental results of Type 304 were provided in this paper as a representative of Types 304, 316 and 316L. The results demonstrated that the SSRT surface crack grew via the same mechanism as for the JIC and fatigue cracks, i.e., these crack growths could be uniformly explained on the basis of the hydrogen-induced successive crack growth (HISCG) model, which considers that cracks successively grow with a sharp shape under the loading process, due to local slip deformations near the crack tip by hydrogen. Accordingly, the HIS crack is ductile, not brittle.
UR - http://www.scopus.com/inward/record.url?scp=85006409819&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006409819&partnerID=8YFLogxK
U2 - 10.1115/PVP2016-63394
DO - 10.1115/PVP2016-63394
M3 - Conference contribution
AN - SCOPUS:85006409819
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - Materials and Fabrication
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2016 Pressure Vessels and Piping Conference, PVP 2016
Y2 - 17 July 2016 through 21 July 2016
ER -