Melt rheology of ring polystyrenes with ultrahigh purity

Yuya Doi, Kazuki Matsubara, Yutaka Ohta, Tomohiro Nakano, Daisuke Kawaguchi, Yoshiaki Takahashi, Atsushi Takano, Yushu Matsushita

Research output: Contribution to journalArticlepeer-review

90 Citations (Scopus)


The melt rheology of highly-purified ring polystyrenes in a wide range of molecular weights (10K ≤ Mw ≤ 240K g/mol) was investigated. All the rings revealed no obvious rubbery plateau and faster terminal relaxation compared to the linear counterparts. The rheological data obtained were compared with some theoretical models such as the Rouse ring model and the lattice-animal model. Moreover, two rheological parameters, zero-shear viscosities η0 and the steady-state recoverable compliances Je, were estimated, and their Mw dependence was discussed. From these data analysis, it was found that relaxation mechanisms of ring chains can be divided into three categories depending on their Mw as follows: (i) Smaller rings (Mw ≤ 20K) exhibit faster terminal relaxation than the predicted Rouse rings. This behavior is related to the difference of the local chain conformation from linear chains. (ii) Rings with the moderate molecular weight (40K ≤ Mw ≤ 90K) exhibit dynamic moduli similar to the Rouse ring prediction. (iii) A larger ring (Mw > 90K) also shows deviant behavior from the Rouse chain because its relaxation time is much longer than the Rouse ring prediction and also the lattice-animal model, where some intermolecular interactions are considered to occur.

Original languageEnglish
Pages (from-to)3140-3147
Number of pages8
Issue number9
Publication statusPublished - May 12 2015

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry


Dive into the research topics of 'Melt rheology of ring polystyrenes with ultrahigh purity'. Together they form a unique fingerprint.

Cite this