Memory function of turbulent fluctuations in soft-mode turbulence

Takayuki Narumi, Junichi Yoshitani, Masaru Suzuki, Yoshiki Hidaka, Fahrudin Nugroho, Tomoyuki Nagaya, Shoichi Kai

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Modal relaxation dynamics has been observed experimentally to clarify statistical-physical properties of soft-mode turbulence, the spatiotemporal chaos observed in homeotropically aligned nematic liquid crystals. We found a dual structure, dynamical crossover associated with violation of time-reversal invariance, the corresponding time scales satisfying a dynamical scaling law. To specify the origin of the dual structure, the memory function due to nonthermal fluctuations has been defined by a projection-operator method and obtained numerically using experimental results. The results of the memory function suggest that the nonthermal fluctuations can be divided into Markov and non-Markov contributions; the latter is called the turbulent fluctuation (TF). Consequently, the relaxation dynamics is separated into three characteristic stages: bare-friction, early, and late stages. If the dissipation due to TFs dominates over that of the Markov contribution, the bare-friction stage contracts; the early and late stages then configure the dual structure. The memory effect due to TFs results in a time-reversible relaxation at the early stage, and the disappearance of the memory by turbulent mixing leads to a simple exponential relaxation at the late stage. Furthermore, the memory effect due to TFs is shown to originate from characteristic spatial coherency called the patch structure.

Original languageEnglish
Article number012505
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume87
Issue number1
DOIs
Publication statusPublished - Jan 23 2013

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Memory function of turbulent fluctuations in soft-mode turbulence'. Together they form a unique fingerprint.

  • Cite this