TY - JOUR
T1 - Metal artefact reduction in the oral cavity using deep learning reconstruction algorithm in ultra-high-resolution computed tomography
T2 - A phantom study
AU - Sakai, Yuki
AU - Kitamoto, Erina
AU - Okamura, Kazutoshi
AU - Tatsumi, Masato
AU - Shirasaka, Takashi
AU - Mikayama, Ryoji
AU - Kondo, Masatoshi
AU - Hamasaki, Hiroshi
AU - Kato, Toyoyuki
AU - Yoshiura, Kazunori
N1 - Publisher Copyright:
© 2021 The Authors. Published by the British Institute of Radiology
PY - 2021/10/1
Y1 - 2021/10/1
N2 - Objectives: This study aimed to improve the impact of the metal artefact reduction (MAR) algorithm for the oral cavity by assessing the effect of acquisition and reconstruction parameters on an ultra-high-resolution CT (UHRCT) scanner. Methods: The mandible tooth phantom with and without the lesion was scanned using super-high-resolution, high-resolution (HR), and normal-resolution (NR) modes. Images were reconstructed with deep learning-based reconstruction (DLR) and hybrid iterative reconstruction (HIR) using the MAR algorithm. Two dental radiologists independently graded the degree of metal artefact (1, very severe; 5, minimum) and lesion shape reproducibility (1, slight; 5, almost perfect). The signal-to-artefact ratio (SAR), accuracy of the CT number of the lesion, and image noise were calculated quantitatively. The Tukey-Kramer method with a p-value of less than 0.05 was used to determine statistical significance. Results: The HRDLR visual score was better than the NRHIR score in terms of degree of metal artefact (4.6 ± 0.5 and 2.6 ± 0.5, p < 0.0001) and lesion shape reproducibility (4.5 ± 0.5 and 2.9 ± 1.1, p = 0.0005). The SAR of HRDLR was significantly better than that of NRHIR (4.9 ± 0.4 and 2.1 ± 0.2, p < 0.0001), and the absolute percentage error of the CT number in HRDLR was lower than that in NRHIR (0.8% in HRDLR and 23.8% in NRIR). The image noise of HRDLR was lower than that of NRHIR (15.7 ± 1.4 and 51.6 ± 15.3, p < 0.0001). Conclusions: Our study demonstrated that the combination of HR mode and DLR in UHRCT scanner improved the impact of the MAR algorithm in the oral cavity.
AB - Objectives: This study aimed to improve the impact of the metal artefact reduction (MAR) algorithm for the oral cavity by assessing the effect of acquisition and reconstruction parameters on an ultra-high-resolution CT (UHRCT) scanner. Methods: The mandible tooth phantom with and without the lesion was scanned using super-high-resolution, high-resolution (HR), and normal-resolution (NR) modes. Images were reconstructed with deep learning-based reconstruction (DLR) and hybrid iterative reconstruction (HIR) using the MAR algorithm. Two dental radiologists independently graded the degree of metal artefact (1, very severe; 5, minimum) and lesion shape reproducibility (1, slight; 5, almost perfect). The signal-to-artefact ratio (SAR), accuracy of the CT number of the lesion, and image noise were calculated quantitatively. The Tukey-Kramer method with a p-value of less than 0.05 was used to determine statistical significance. Results: The HRDLR visual score was better than the NRHIR score in terms of degree of metal artefact (4.6 ± 0.5 and 2.6 ± 0.5, p < 0.0001) and lesion shape reproducibility (4.5 ± 0.5 and 2.9 ± 1.1, p = 0.0005). The SAR of HRDLR was significantly better than that of NRHIR (4.9 ± 0.4 and 2.1 ± 0.2, p < 0.0001), and the absolute percentage error of the CT number in HRDLR was lower than that in NRHIR (0.8% in HRDLR and 23.8% in NRIR). The image noise of HRDLR was lower than that of NRHIR (15.7 ± 1.4 and 51.6 ± 15.3, p < 0.0001). Conclusions: Our study demonstrated that the combination of HR mode and DLR in UHRCT scanner improved the impact of the MAR algorithm in the oral cavity.
UR - http://www.scopus.com/inward/record.url?scp=85115812258&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115812258&partnerID=8YFLogxK
U2 - 10.1259/dmfr.20200553
DO - 10.1259/dmfr.20200553
M3 - Article
C2 - 33914646
AN - SCOPUS:85115812258
VL - 50
JO - Dentomaxillofacial Radiology
JF - Dentomaxillofacial Radiology
SN - 0250-832X
IS - 7
M1 - 20200553
ER -